1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
import ij.IJ;
import ij.ImagePlus;
import ij.gui.GenericDialog;
import ij.plugin.filter.PlugInFilter;
import ij.process.ByteProcessor;
import ij.process.ImageProcessor;
/**
* Skeleton Filter
*
* @author Xavier Philippeau (from work of Dr. Chai Quek)
*
*/
public class Skeleton_ implements PlugInFilter {
// neighbours order
private int[] dx = new int[] {-1, 0, 1,1,1,0,-1,-1};
private int[] dy = new int[] {-1,-1,-1,0,1,1, 1, 0};
// Smoothing pattern
private int[] pattern1={-1,1,0,1,0,0,0,0};
private int[] pattern2={0,1,0,1,-1,0,0,0};
private int[] pattern3={0,0,-1,1,0,1,0,0};
private int[] pattern4={0,0,0,1,0,1,-1,0};
private int[] pattern5={0,0,0,0,-1,1,0,1};
private int[] pattern6={-1,0,0,0,0,1,0,1};
private int[] pattern7={0,1,0,0,0,0,-1,1};
private int[] pattern8={0,1,-1,0,0,0,0,1};
// filter configuration
private boolean blackbackground = true;
private int threshold = 0;
// About...
private void showAbout() {
IJ.showMessage("Skeleton...","Skeleton Filter by Pseudocode");
}
public int setup(String arg, ImagePlus imp) {
// about...
if (arg.equals("about")) {
showAbout();
return DONE;
}
// else...
if (imp==null) return DONE;
// Configuration dialog.
GenericDialog gd = new GenericDialog("Parameters");
gd.addChoice("Background color", new String[]{"Black","White"}, "Black");
gd.addNumericField("Black/White threshold",128,0);
while(true) {
gd.showDialog();
if ( gd.wasCanceled() ) return DONE;
this.blackbackground = gd.getNextChoice().equals("Black")?true:false;
this.threshold = (int)gd.getNextNumber();
if (this.threshold<=0) continue;
if (this.threshold>=255) continue;
break;
}
gd.dispose();
return PlugInFilter.DOES_8G;
}
public void run(ImageProcessor ip) {
// ImageProcessor -> ByteProcessor conversion
ByteProcessor bp = new ByteProcessor(ip.getWidth(),ip.getHeight());
for (int y = 0; y < ip.getHeight(); y++) {
for (int x = 0; x < ip.getWidth(); x++) {
bp.set(x,y,ip.getPixel(x,y));
}
}
// filter
ByteProcessor newbp = filter( bp );
// ByteProcessor -> ImageProcessor conversion
ImageProcessor out = new ByteProcessor(ip.getWidth(),ip.getHeight());
for (int y = 0; y < ip.getHeight(); y++) {
for (int x = 0; x < ip.getWidth(); x++) {
out.set(x,y,newbp.get(x,y));
}
}
ImagePlus newImg = new ImagePlus("Skeleton", out);
newImg.show();
}
// -------------------------------------------------------------------------
// Binary value of the gray scale image (0..255) -> (0,1)
private int ChannelValue(ByteProcessor c,int x,int y) {
if (c.getPixel(x,y)<this.threshold) return 0;
return 1;
}
// Neighbourhood
private int neighbourhood(ByteProcessor c,int x,int y) {
int neighbourhood=0;
for(int i=0;i<8;i++)
neighbourhood += ChannelValue(c,x+dx[i],y+dy[i]);
return neighbourhood;
}
// Transitions Count
private int transitions(ByteProcessor c,int x,int y) {
int Trans=0;
for(int i=0;i<8;i++) {
int pc = ChannelValue(c,x+dx[i],y+dy[i]);
int pn = ChannelValue(c,x+dx[(i+1)%8],y+dy[(i+1)%8]);
if ((pc==0) && (pn==1)) Trans++;
}
return Trans;
}
// Match a pattern
private boolean matchPattern(ByteProcessor c,int x,int y,int[] pattern) {
for(int i=0;i<8;i++) {
if (pattern[i]==-1) continue;
int v = ChannelValue(c,x+dx[i],y+dy[i]);
if (pattern[i]!=v) return false;
}
return true;
}
// Match one of the 8 patterns
private boolean matchOneOfPatterns(ByteProcessor c,int x,int y) {
if (matchPattern(c,x,y,pattern1)) return true;
if (matchPattern(c,x,y,pattern2)) return true;
if (matchPattern(c,x,y,pattern3)) return true;
if (matchPattern(c,x,y,pattern4)) return true;
if (matchPattern(c,x,y,pattern5)) return true;
if (matchPattern(c,x,y,pattern6)) return true;
if (matchPattern(c,x,y,pattern7)) return true;
if (matchPattern(c,x,y,pattern8)) return true;
return false;
}
private ByteProcessor thinning(ByteProcessor original) {
int width = original.getWidth();
int height = original.getHeight();
// previous image buffer
ByteProcessor c = new ByteProcessor(width,height);
for(int y=0;y<height;y++)
for(int x=0;x<width;x++)
if (this.blackbackground)
c.set(x,y,255*ChannelValue(original,x,y));
else
c.set(x,y,255-255*ChannelValue(original,x,y));
// new image buffer
ByteProcessor c2 = new ByteProcessor(width,height);
// loop until idempotence
for(int loop=0;;loop++) {
int pixelchangecount=0;
// copy previous image in new image
for(int y=0;y<height;y++)
for(int x=0;x<width;x++)
c2.set(x,y,c.get(x,y));
// for each pixel
for(int y=1;y<height-1;y++) {
for(int x=1;x<width-1;x++) {
// pixel value
int v = ChannelValue(c,x,y);
// pixel not set -> next
if (v==0) continue;
// is a boundary ?
int previousNeighbourhood = neighbourhood(c,x,y);
if (previousNeighbourhood==8) continue;
// is an extremity ?
int currentNeighbourhood = neighbourhood(c2,x,y);
if (currentNeighbourhood<=1) continue;
if (currentNeighbourhood>=6) continue;
// is a connection ?
int transitionsCount = transitions(c2,x,y);
// Addition to the original algorithm:
// Preservation of the "Y curve" near the edges
if (transitionsCount==1 && previousNeighbourhood<=3) continue;
if (transitionsCount==1) {
pixelchangecount++;
c2.set(x,y,0);
continue;
}
// is a deletable pixel ?
boolean matchOne = matchOneOfPatterns(c2,x,y);
if (matchOne) {
pixelchangecount++;
c2.set(x,y,0);
continue;
}
}
}
// no change -> return result
if (pixelchangecount==0) return c;
// swap image buffers, then loop.
ByteProcessor tmp = c;
c=c2;
c2=tmp;
}
}
// Return the skeleton
public ByteProcessor filter(ByteProcessor bp) {
ByteProcessor skel = thinning(bp);
return skel;
}
} |
Partager