Voici une implémentation Java de l'algorithme "Snake" (contour actif).
L'algorithme Snake permet de tracer le contour d'une zone irrégulière en déformant progressivement une courbe de départ. Pour plus d'informations, je vous conseille l'article de khayyam90.
La classe Snake (attributs+constructeur)
Code java : Sélectionner tout - Visualiser dans une fenêtre à part
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 public class Snake { // Points of the snake private List<Point> snake; // Length of the snake (euclidean distance) private double snakelength=0; // size of the image (and of the 2 arrays below) private int width=0,height=0; // gradient value (modulus) private int[][] gradient; // gradient flow (modulus) private int[][] flow; // 3x3 neighborhood used to compute energies private double[][] e_uniformity = new double[3][3]; private double[][] e_curvature = new double[3][3]; private double[][] e_flow = new double[3][3]; private double[][] e_inertia = new double[3][3]; // auto add/remove points to the snake // according to distance between points private boolean AUTOADAPT=true; private static int AUTOADAPT_LOOP=10; private static int AUTOADAPT_MINLEN=8; private static int AUTOADAPT_MAXLEN=16; // maximum number of iterations (if no convergence) private static int MAXITERATION = 1000; // coefficients for the 4 energy functions public double alpha=1.1, beta=1.2, gamma=1.5, delta=3.0; // alpha = coefficient for uniformity (high => force equals distance between points) // beta = coefficient for curvature (high => force smooth curvature) // gamma = coefficient for flow (high => force gradient attraction) // delta = coefficient for intertia (high => get stuck to gradient) /** * Constructor * * @param width,height size of the image and of the 2 following arrays * @param gradient gradient (modulus) * @param flow gradient flow (modulus) * @param points inital points of the snake */ public Snake(int width, int height, int[][] gradient, int[][] flow, Point... points) { this.snake = new ArrayList<Point>(Arrays.asList(points)); this.gradient = gradient; this.flow = flow; this.width = width; this.height = height; } // add here the other methods. }
Les méthodes de l'algorithme "snake"
Code java : Sélectionner tout - Visualiser dans une fenêtre à part
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127 /** * main loop * * @return the final snake */ public List<Point> loop() { int loop=0; while(step() && loop<MAXITERATION) { // auto adapt the number of points in the snake if (AUTOADAPT && (loop%AUTOADAPT_LOOP)==0) { removeOverlappingPoints(AUTOADAPT_MINLEN); addMissingPoints(AUTOADAPT_MAXLEN); } loop++; } // rebuild using spline interpolation if (AUTOADAPT) rebuild(AUTOADAPT_MAXLEN); return this.snake; } /** * update the position of each point of the snake * * @return true if the snake has changed, otherwise false. */ private boolean step() { boolean changed=false; Point p = new Point(0,0); // compute length of original snake (used by method: f_uniformity) this.snakelength = getsnakelength(); // compute the new snake List<Point> newsnake = new ArrayList<Point>(snake.size()); // for each point of the previous snake for(int i=0;i<snake.size();i++) { Point prev = snake.get((i+snake.size()-1)%snake.size()); Point cur = snake.get(i); Point next = snake.get((i+1)%snake.size()); // compute all energies for(int dy=-1;dy<=1;dy++) { for(int dx=-1;dx<=1;dx++) { p.setLocation(cur.x+dx, cur.y+dy); e_uniformity[1+dx][1+dy] = f_uniformity(prev,next,p); e_curvature[1+dx][1+dy] = f_curvature(prev,p,next); e_flow[1+dx][1+dy] = f_gflow(cur,p); e_inertia[1+dx][1+dy] = f_inertia(cur,p); } } // normalize energies normalize(e_uniformity); normalize(e_curvature); normalize(e_flow); normalize(e_inertia); // find the point with the minimum sum of energies double emin = Double.MAX_VALUE, e=0; int x=0,y=0; for(int dy=-1;dy<=1;dy++) { for(int dx=-1;dx<=1;dx++) { e = 0; e+= alpha * e_uniformity[1+dx][1+dy]; // internal energy e+= beta * e_curvature[1+dx][1+dy]; // internal energy e+= gamma * e_flow[1+dx][1+dy]; // external energy e+= delta * e_inertia[1+dx][1+dy]; // external energy if (e<emin) { emin=e; x=cur.x+dx; y=cur.y+dy; } } } // boundary check if (x<1) x=1; if (x>=(this.width-1)) x=this.width-2; if (y<1) y=1; if (y>=(this.height-1)) y=this.height-2; // compute the returned value if (x!=cur.x || y!=cur.y) changed=true; // create the point in the new snake newsnake.add(new Point(x,y)); } // new snake becomes current this.snake=newsnake; return changed; } // normalize energy matrix private void normalize(double[][] array3x3) { double sum=0; for(int i=0;i<3;i++) for(int j=0;j<3;j++) sum+=Math.abs(array3x3[i][j]); if (sum==0) return; for(int i=0;i<3;i++) for(int j=0;j<3;j++) array3x3[i][j]/=sum; } private double getsnakelength() { // total length of snake double length=0; for(int i=0;i<snake.size();i++) { Point cur = snake.get(i); Point next = snake.get((i+1)%snake.size()); length+=distance2D(cur, next); } return length; } private double distance2D(Point A, Point B) { int ux = A.x-B.x; int uy = A.y-B.y; double un = ux*ux+uy*uy; return Math.sqrt(un); }
Les méthodes des fonctions d'energie:
Code java : Sélectionner tout - Visualiser dans une fenêtre à part
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47 private double f_uniformity(Point prev, Point next, Point p) { // length of previous segment double un = distance2D(prev, p); // mesure of uniformity double avg = snakelength/snake.size(); double dun = Math.abs(un-avg); // elasticity energy return dun*dun; } private double f_curvature(Point prev, Point p, Point next) { int ux = p.x-prev.x; int uy = p.y-prev.y; double un = Math.sqrt(ux*ux+uy*uy); int vx = p.x-next.x; int vy = p.y-next.y; double vn = Math.sqrt(vx*vx+vy*vy); if (un==0 || vn==0) return 0; double cx = (vx+ux)/(un*vn); double cy = (vy+uy)/(un*vn); // curvature energy double cn = cx*cx+cy*cy; return cn; } private double f_gflow(Point cur, Point p) { // gradient flow int dcur = this.flow[cur.x][cur.y]; int dp = this.flow[p.x][p.y]; double d = dp-dcur; return d; } private double f_inertia(Point cur, Point p) { double d = distance2D(cur, p); double g = this.gradient[cur.x][cur.y]; double e = g*d; return e; }
Les méthodes du mécanisme d'auto-adaptation:
Code java : Sélectionner tout - Visualiser dans une fenêtre à part
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91 // rebuild the snake using cubic spline interpolation private void rebuild(int space) { // precompute length(i) = length of the snake from start to point #i double[] clength = new double[snake.size()+1]; clength[0]=0; for(int i=0;i<snake.size();i++) { Point cur = snake.get(i); Point next = snake.get((i+1)%snake.size()); clength[i+1]=clength[i]+distance2D(cur, next); } // compute number of points in the new snake double total = clength[snake.size()]; int nmb = (int)(0.5+total/space); // build a new snake List<Point> newsnake = new ArrayList<Point>(snake.size()); for(int i=0,j=0;j<nmb;j++) { // current length in the new snake double dist = (j*total)/nmb; // find corresponding interval of points in the original snake while(! (clength[i]<=dist && dist<clength[i+1])) i++; // get points (P-1,P,P+1,P+2) in the original snake Point prev = snake.get((i+snake.size()-1)%snake.size()); Point cur = snake.get(i); Point next = snake.get((i+1)%snake.size()); Point next2 = snake.get((i+2)%snake.size()); // do cubic spline interpolation double t = (dist-clength[i])/(clength[i+1]-clength[i]); double t2 = t*t, t3=t2*t; double c0 = 1*t3; double c1 = -3*t3 +3*t2 +3*t + 1; double c2 = 3*t3 -6*t2 + 4; double c3 = -1*t3 +3*t2 -3*t + 1; double x = prev.x*c3 + cur.x*c2 + next.x* c1 + next2.x*c0; double y = prev.y*c3 + cur.y*c2 + next.y* c1 + next2.y*c0; Point newpoint = new Point( (int)(0.5+x/6), (int)(0.5+y/6) ); // add computed point to the new snake newsnake.add(newpoint); } this.snake = newsnake; } private void removeOverlappingPoints(int minlen) { // for each point of the snake for(int i=0;i<snake.size();i++) { Point cur = snake.get(i); // check the other points (right half) for(int di=1+snake.size()/2;di>0;di--) { Point end = snake.get((i+di)%snake.size()); double dist = distance2D(cur,end); // if the two points are to close... if ( dist>minlen ) continue; // ... cut the "loop" part og the snake for(int k=0;k<di;k++) snake.remove( (i+1) %snake.size() ); break; } } } private void addMissingPoints(int maxlen) { // for each point of the snake for(int i=0;i<snake.size();i++) { Point prev = snake.get((i+snake.size()-1)%snake.size()); Point cur = snake.get(i); Point next = snake.get((i+1)%snake.size()); Point next2 = snake.get((i+2)%snake.size()); // if the next point is to far then add a new point if ( distance2D(cur,next)>maxlen ) { // precomputed Uniform cubic B-spline for t=0.5 double c0=0.125/6.0, c1=2.875/6.0, c2=2.875/6.0, c3=0.125/6.0; double x = prev.x*c3 + cur.x*c2 + next.x* c1 + next2.x*c0; double y = prev.y*c3 + cur.y*c2 + next.y* c1 + next2.y*c0; Point newpoint = new Point( (int)(0.5+x), (int)(0.5+y) ); snake.add( i+1 , newpoint ); i--; } } }
Utilisation:
Le constructeur de la classe Snake a besoin des paramètres suivants:
- int width,height: la taille de l'image (et des deux tableaux suivants)
- int[][] gradient: un tableau contenant la norme du gradient pour chaque pixel [x][y]
- int[][] flow: un tableau contenant la norme du vecteur de flux pour chaque pixel [x][y].
En pratique, on peut utiliser la carte des distances jusqu'au pic de gradient le plus proche- Point... points: la liste des points constituant le snake initial
La méthode publique "loop()" fait évoluer le snake jusqu'a convergence et retourne la liste des points du snake final.
Partager