
libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 1 of 20

libacarsd 1.46
ACARS Decoder

Library

©. 2003,2004 by KjM <acarsd@acarsd.org>

It is not allowed to monitor all radio frequencies in every
country!

Software that makes use of libacarsd as decoder should
make the end users aware of this!

The author cannot be held liable for any legal
consequences

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 2 of 20

1.)Preface

libacarsd is a free library for decoding of ACARS signals into readable messages.
ACARS is an abbreviation for:

Aircraft Communication Addressing and Reporting System

In order to use libacarsd you need experience in C programming under Windows or
under Linux.

On request I may also compile libacarsd as library for other systems.

I can only guarantee that libacarsd occupies disk space and is virus-free in the
original package. It is impossible to guarantee that any software functions correctly,
since errors can never be excluded. Libacarsd has been successfully tested for
months on different Windows and Linux systems, so problems should be quite rare.

In case of problems or to suggest enhancements, please mail to acarsd@acarsd.org.

2.)Integration in programs

You may include libacarsd in any non-commercial product. Generally you should
refer expressly to your use of libacarsd in the documentation or the tips to your
program. If you want to use libacarsd in a commercial application, please get in
touch by mail to acarsd@acarsd.org

3.)Contents of the package

The following files are included in the libacarsd package:

�libacarsd.dll dynamic library for Windows
�libacarsd.a static library for Windows
�libacarsd.so dynamic library for Linux
�libacarsd.la static library for Linux
�libacarsd.h header file for libacarsd
�sndfile.snd sample sound file with ACARS messages
�test.c sample C Source

Since version 1.45 the package contains both the libraries for Windows and for
Linux. You can test libacarsd on your system with the provided sample source code
(test.c). Additional details follow later in this documentation.

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 3 of 20

4.)libacarsd functions

The following functions are offered by libacarsd and can be used by your application:

libacarsd *acarsd_init(const int buf, const int sample, const int
pass);

This is the libaracsd function you must call first. You pass 3 integer values to this
function:

buf - Size of the sound buffer which is to be processed

The buffer must not be smaller than the value
indicated here, otherwise memory errors will
result!

sample - Sampling rate for the sound buffer
The current version of libacarsd supports the
following sampling rates:

 19500 Hz, 8bit
 22050 Hz, 8bit
 44100 Hz, 8bit
 These are defined through macros in libacarsd.h.
 19500Hz = STREAM19500
 22050Hz = STREAM22050
 44100Hz = STREAM44100
 16 bit sound is currently not supported!
pass - Number of passes per sound file.

libacarsd is a real-time multi-pass decoder. Each
sound buffer is processed several times with
different values until a message has been
successfully decoded. On systems with a weak CPU
you should not run through more than 6 passes. The
default is 7 and a maximum of 10 is possible.

acarsd_init returns a pointer to a libacarsd structure, or NULL in case of an error.

If libacarsd returns NULL you should not make calls to any other functions in the
library!

acarsd_destroy(libacarsd *Lib);

This function finishes the use of libacarsd and the libacarsd structure as well as all
internal variables are erased.

Following a call to this function you have to re-initialize libacarsd if you would like to
make use of libacarsd again!

You must call this function:
�before terminating your program

or
�when you do not need libacarsd any more

libacarsd makes use of memory that is only freed up again by calling this function!

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 4 of 20

int ACARS_Decoder(libacarsd *Lib, unsigned char *buff);

This function tries to convert the buffer (*buff) to readable ACARS messages.

In order to avoid unnecessary calls, this function does not verify that libacarsd has
been correctly initialized. Crashes may result if you call ACARS_Decoder() without
initializing libacarsd correctly first!

ACARS_Decoder() returns an integer value which can be either ACS_NOTHING or
ACD_SUCCESS. If the result is ACS_NOTHING, then nothing was decoded. If
ACARS_Decoder() returns ACD_SUCCESS, you need to process the available message
in a defined structure, and then call ACARS_Decoder() again, since there may be
more than one message in one buffer!

int acarsd_goodoffset(libacarsd *Lib, int *num);

Following a return with ACD_SUCCESS you may determine the optimal message
yourself from the codeholder structure, or you may leave this to libacarsd. You use
the acarsd_goodoffset()function if you want libacarsd to take care of this for
you.

As for nearly all functions, what you pass to acarsd_goodoffset() is the initialized
libacarsd structure and a pointer to an integer variable.

acarsd_goodoffset() returns the following values:

ACARSD_VALIDATED A message with correct checksum is present.
ACARSD_WITHCRC An error-free message is present, but the checksum

does not match.
ACARSD_BEST The best available message is present. “Best

available” means that the message has errors in it,
but in the set of possible messages this is the one
with fewest errors.

ACARSD_NONE No usable message was decoded.

For all results except ACARSD_NONE, the offset of the readable message can be found
in the integer variable indicated as a pointer.

If acarsd_goodoffset() returns ACARSD_NONE, you should not make use of the
returned integer value, as it will contain -1 which is an invalid offset!

void acarsd_sorttables(libacarsd *Lib);

libacarsd makes internal use of a range of different code tables that are applied to
the sound buffer. The applied code tables depend both on the air-band scanner used
and/or the sound card. This function should be called after around 100 successfully
decoded messages in order to achieve an optimal sorting of code tables and to
reduce processor usage.
This function returns nothing.

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 5 of 20

char *acarsd_human_readable(libacarsd *Lib, const int force);

This function takes care of creating a readable ACARS message from the
codeholder structure. If you use this function, you do not need to use
acarsd_goodoffset(), since that function is called from inside
acarsd_human_readable().

acarsd_human_readable() transforms the best possible message into the standard
ACARS message format and returns the result as char*. In order to avoid memory
problems, remember to free up memory by using free() when you have fished
processing the result.

If you set force to TRUE (1, that is), messages with errors are also returned. If
you set force to FALSE (0, that is), messages are only returned if the checksum
is correct or if they are error-free after the libacarsd tests.

acarsd_human_readable() returns a NULL pointer if no message can be created.

char *ACARS_VInfo(libacarsd *Lib);

This function produces a string which represents the volume of the sound buffer that
was just processed. The sound buffer is split into blocks of 127 bytes and the
volume is calculated for each block. The string always consists of 3 digit values and
a divider (|). Example: 017|001|097|101|099|.

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 6 of 20

char *acarsd_errors_of_msg(libacarsd *Lib, const int offset);

This function returns the error flags that relate to the message referenced by
offset. You have to free the returned pointer of char!

acarsd_errors_of_msg() returns NULL if offset has an invalid value or if no
known errors are found.

The following errors have been defined in libacarsd.h:

MSG_ERR_ALL although libacarsd correctly identified a header

*<SYN><SYN><SOH>, the rest of the message could not
be decoded

MSG_ERR_REG The aircraft registration contains invalid
 characters.

Messages with correctly verified checksums may
still contain ‘strange’ characters in the
registration.

MSG_ERR_LAB The message label contains invalid characters

MSG_ERR_BLK The block id contains invalid characters

MSG_ERR_MSG The message number contains invalid characters

MSG_ERR_FLI The flight number contains invalid characters

MSG_ERR_EXT The message text part of the transmission contains

invalid characters

acarsd_errors_of_msg() may return a strings like the following:

 „MSG_ERR_BLK MSG_ERR_FLI MSG_ERR_EXT“

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 7 of 20

long acarsd_option(libacarsd *Lib, int option, int value);

With this function you may select or change different libacarsd options. If you
combine option with ACARSD_GET (using OR), the appropriate option will be
queried. If you combine option with ACARSD_SET, then the appropriate option will
be set to the new value as defined by value.
It is not possible to set all options. acarsd_option() returns TRUE if a value was
successfully set. FALSE is returned if a value could not be set. If you try to use an
invalid option, -1 will be returned.

The following options are available:

Option Purpose Read Write
ACARSD_CRCMODE Turn on or off CRC YES NO
 verification

ACARSD_CODETABLES Read/change the number YES YES (1-8)
 of code tables used

ACARSD_CODEPOS Number of active
 entries in the
 codeholder structure YES NO

ACARSD_VOLUME Calculated volume YES (0-100) NO
 of the last buffers

ACARSD_BUFSIZE Size of the sound buffer YES YES

ACARSD_PASSES Number of passes per YES YES (1-10)
 sound buffer

ACARSD_SAMPLE Sampling rate of YES YES
 sound buffer

ACARSD_BUFFERS Number of decoded buffers YES NO

For instance, in order to retrieve the number of decoded sound buffers, you can
make the following call:

/* Output number of decoded buffers */
printf(„Number of decoded buffers: %ld\n“,
 acarsd_option(Lib, ACARSD_GET|ACARSD_BUFFERS));

Lib is an initialized instance of libacarsd

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 8 of 20

5.)Available macros in libacarsd

libacarsd.h contains definitions for some macros that shorten or simplify calls. These
macros are explained below:

agetopt(L,F);

This macro refers to the acarsd_option() function. The parameter L is an initialized
instance of libacarsd and F is the appropriate option which is to be read.

asetopt(L,F);

This macro also refers to the acarsd_option()function. You can use this function to
set options. The parameter L is an initialized instance of libacarsd and F is the
appropriate option which is to be changed.

isuplink(L,O);

This macro examines if the message in Offset (referred to by O) is an uplink. Uplinks
are messages that are transmitted to aircraft by ground stations. They can only be
received in the immediate vicinity of an airport.

issquitter(L,O);

This macro examines if the message in Offset (referred to by O) is a Squitter.
Squitter messages can be regarded as a form of ‘HERE I AM’ message from the
ground stations.

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 9 of 20

6.)Available variables in libacarsd

libacarsd provides access to a set of variables. Firstly, it is the character translation
table for characters < 32. This variable has been defined as an array of char* and
may be referred to with spec[0..31].

The second global variable is also an array of char * and contains the error
designators that it is possible for a message to have. 8 elements which are adapted
to the constant MSG_ERR_* have been defined.

In order to determine the exact version of libacarsd, 3 global integer variables are
available:

libacarsdmajorversion Major Version of libacarsd (current 1)
libacarsdminorversion Minor Version of libacarsd (current 45)
libacarsdrevision Revision number of libacarsd

Thus you may communicate to the users of your program which version of libacarsd
is being used.

/* Output of version information */
printf(„Using libacarsd %d.%dRev%d\n“,
 libacarsdmajorversion,libacarsdminorversion,
 libacarsdrevision);

You can call this without initializing libacarsd

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 10 of 20

7.)The codeholder structure

The ACARS_Decoder() function stores all results in a structure which has been
defined as element codeholder within the libacarsd structure.
Codeholder itself has been defined as Array of 100 so as to store the highest
number of provided messages. Codeholder is erased whenever ACARS_Decoder()
is called, so you should read and process the values first .

7.1.)Organization of the structure

Whenever ACD_SUCCESS has been returned from the ACARS_Decoder() function, the
number of occupied codeholder structures is available in the variable Lib-
>acarsd_codepos. The corresponding messages are stored per codeholder. You
may write the program logic yourself in order to find the best message, alternatively
you may use the acarsd_goodoffset() function. If you write the logic yourself you
should first look for messages where CRC = 0, meaning that the checksum was
found to be correct. Absent any of these, you should then look for messages with no
errors. If you do not find any of these either, the only thing you can do is to
determine which message has the lowest number of errors.

Example:

 /* Get CRC checked messages */
 for (i=0;i<Lib->acarsd_codepos;i++) {
 if ((!Lib->codeholder[i].errors) && (Lib-
>codeholder[i].closed) &&
 (!Lib->codeholder[i].crc)) {
 m = i;
 crcok = TRUE;
 goto noerror;
 }
 }

 /* Get best message (CRC check failed) */
 for (i=0;i<Lib->acarsd_codepos;i++) {
 if ((!Lib->codeholder[i].errors) && (Lib-
>codeholder[i].closed)) {
 m = i;
 goto noerror;
 }
 }

 /* Search messages without errors */
 for (i=0;i<Lib->acarsd_codepos;i++) {
 if (!Lib->codeholder[i].errors) {
 m = i;
 goto noerror;
 }
 }

 /* Here errorhandling */
 return;

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 11 of 20

 /* Label for good messages */
 noerror:
 ...

In the example above there is first a search for a message with the correct
checksum, then a search for one without errors and ending with either <ETX> with or
<ETB>. If no such message is found, the message with the lowest number of errors
is being selected. However, acarsd_goodoffset() can do this for you. You would
then get the value of Offset (m in the example above) in the pointer variable returned
from the function acarsd_goodoffset().

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 12 of 20

7.2.)Definition of the codeholder structure

You can derive the logic of the codeholder structure from the header file
libacarsd.h.
The structure is shown here:

/* Typedefinition for a single char within ACARS stream */
typedef struct {
 unsigned char error; /* Error indicated by 1. No error = 0 */
 unsigned char data; /* Decoded char - without error? see above */
} ACD_CONT;

/* Typedefinition for the complete ACARS stream */
typedef struct {
 int len; /* Count of decoded chars */
 int errors; /* Errorcounter */
 int closed; /* Transmission correct closed */
 int flags; /* Flags for this transmission */
 int squitter; /* This is a Squitter message */
 int uplink; /* This is a Uplink message */
 int lastpos; /* Last position within soundstream */
 unsigned short crc; /* Calcutated CRC. 0 if message is complete and
validated! */
 ACD_CONT c[1024]; /* Included typedef from above */
} ACD;

ACD corresponds to an element of the codeholder Array. The flags in flags
correspond to the error flags MSG_ERR_*.

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 13 of 20

8.)Determining the sound volume

The sound volume is calculated automatically during the first processing of the sound
buffer. The possible values are between 0-100 . This is the percent value of the
actual soundstream.
You can obtain the value of acarsd_volume straight from the libacarsd structure or
alternatively by using the following macro: agetopt(Lib,ACARSD_VOLUME).

9.)Sample code

The functioning of libacarsd should be illustrated by the example below.

You can compile the example under Linux by using the following command:

gcc test.c -s -Wall -O3 -o libacarsdtest -L./ -lacarsd

Under Windows I have tested the library under CYGWIN (www.cygwin.com) and
under MINGW (www.mingw.org). For both of these you can use the same command
as shown above.

Following a successful compilation you can run the program libacarsdtest.
Assuming you are using the included sound file (sndfile.snd), you should get the
following output:

Libacarsd version: 1.46Rev2
CRC MODE IS ENABLED: YES
CHECKSUM VALIDATED ON MESSAGE
*<SYN><SYN><SOH>2.VH-OGE<NAK>
80<STX>4026QF0039/MEL.<CR><LF>MVA<CR><LF>QF39/13.VHOGE.MEL<CR><LF>AD082
9/0840 EA1129 AKL<ETX>

CHECKSUM VALIDATED ON MESSAGE
*<SYN><SYN><SOH>2.VH-OGE<NAK> H1<STX>D029QF0039#1BBTKO<CR><LF>0840
13JAN04 MEL AKL P207 P165 00480 276 145727 04<CR><LF>L 1022 1035 872
8975 1197 61 095 132 05H 2000<CR><LF>R 1025 1043 858 8964 1199 68 098
127 09B 200<CR><LF>1078 1023 096 032P430<CR><LF>1079 1025 093<ETX>

CHECKSUM VALIDATED ON MESSAGE
*<SYN><SYN><SOH>2.VH-OGE<NAK>
86<STX>5208QF0039/AKL.<CR><LF>ARI<CR><LF>AKL ETAB 11:40<CR><LF>WH/CH 01
UN/MNR 02<CR><LF>GIDAY<ETX>

CHECKSUM VALIDATED ON MESSAGE
*<SYN><SYN><SOH>2.VH-OGE<NAK> H1<STX>D063QF0034#1FBFCP<CR><LF>2107
14JAN04 AKL MEL P010 M272 24972 759 129461 09<CR><LF>R 0235<CR><LF>NO
087 098 011 000 000 000 000 000 <CR><LF>PC 085 013 000 000 000 000 000
000 <ETX>

CHECKSUM VALIDATED ON MESSAGE
*<SYN><SYN><SOH>2.VH-OGE<ACK> _ <STX>1243QF0033<ETX>

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 14 of 20

[...]

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 15 of 20

9.1.)The source code of test.c

And here is the source code in the file test.c which has been provided for you:

/*
 Sample code to test the function of libacarsd
 Written by KjM <acarsd@acarsd.org>
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>

/* Include from libacarsd */
#include "libacarsd.h"

/* Filename for testfiles */
#define FILENAME "./sndfile.snd"

/* Simply test */
int main(int argc, char **args) {
 libacarsd *L;
 int i , j, num, succ = 0, err = 0;
 FILE *F;
 unsigned char *c;
 char *a;
 struct stat st;

 /* Get Filesize */
 if (stat(FILENAME,&st)) {
 fprintf(stderr,"Cannot stat() %s\n",FILENAME);
 return 255;
 }

 /* Init lib
 1. Param: Size of buffer
 2. Param: Sampling rate
 3. Param: Number of passes */
 if (!(L = acarsd_init(st.st_size,STREAM19500,8))) {
 printf("acarsd_init() error\n");
 return 255;
 }

 /* Something about libacarsd */
 fprintf(stderr,"Libacarsd version: %d.%dRev%d\n",
 libacarsdmajorversion,libacarsdminorversion,
 libacarsdrevision);

 /* CRC/FCB Check is activ? */
 fprintf(stderr,"CRC MODE IS ENABLED: %s\n",
 (acarsd_option(L,ACARSD_GET|ACARSD_CRCMODE,0))?"YES":"NO");

 /* Disable CRC check */
 asetopt(L,ACARSD_CRCMODE,0);

 /* Set 10 passes on each buffer */
 asetopt(L,ACARSD_PASSES,10);

 /* Use 9 codetables */
 asetopt(L,ACARSD_CODETABLES,9);

 /* Get memory for sample soundfile */
 c = malloc(st.st_size);
 if ((F = fopen(FILENAME,"rb"))) {
 fread(c,1,st.st_size,F); fclose(F);
 } else {

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 16 of 20

 /* Free the stream buffer memory */
 free(c);
 printf("error reading soundfile 'sndfile.snd'\n");

 /* Destroy lib */
 acarsd_destroy(L);
 return 254;
 }

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 17 of 20

 /* Try to find all messages from soundfile */
 while (ACARS_Decoder(L,c)) {

 /* Get the best message */
 num = acarsd_goodoffset(L,&i);

 if (num != ACARSD_NONE) {
 if (!L->codeholder[i].crc) {
 printf("CHECKSUM VALIDATED ON MESSAGE\n");
 succ++;
 } else {
 if ((a = acarsd_errors_of_msg(L, i))) {
 printf("Errors: %s\n",a); free(a);
 }
 err++;
 }
 for (j=0;j<=L->codeholder[i].len;j++) {
 if (L->codeholder[i].c[j].data < 32)
 fprintf(stdout,"<%s>",spec[L->codeholder[i].c[j].data]);
 else
 fprintf(stdout,"%c",L->codeholder[i].c[j].data);
 }
 fprintf(stdout,"\n---\n");
 }
 }

 /* Print the volume of the soundstream */
 fprintf(stderr,"Volume: %ld / Buffers: %ld\n",
 agetopt(L,ACARSD_VOLUME),agetopt(L,ACARSD_BUFFERS));

 for (i=0;i<agetopt(L,ACARSD_CODETABLES);i++) {
 printf("Codetable #%d - %ld good messages\n",
 i+1,L->acarsd_utable[i]);
 }

 printf("+----+----+\n| %02d | %02d |\n+----+----+\n",succ,err);

 /* Destroy libacarsd */
 acarsd_destroy(L);

 /* Free the stream buffer memory */
 free(c);
 return 0;
}

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 18 of 20

10.)Which tasks will libacarsd do for you?

If you would like to program an ACARS decoder yourself, then libacarsd will simplify
your work considerably (I spent weeks working on the algorithms). What you have to
do is the following:

The steps shown above against a blue background you will have to program yourself.
The step shown in green will be handled completely by libacarsd. The step marked
in orange can either be handled by libacarsd or you may program it yourself.

If you organize the work around these 5 main steps, libacarsd will take care of up to
40% of the work involved in developing a fully functioning and effective ACARS
decoder.

Initialize

Retrieve the sound data

Decode the ACARS data

Evaluate the ACARS data

Present the ACARS data

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 19 of 20

11.)Licenses

libacarsd can be used free of charge in non-commercial programs, but please make a
reference to the use of libacarsd. If possible, please also include a link to
http://www.acarsd.org/libacarsd.html .
If you wish to use libacarsd in a commercial application you will need to purchase a
license. Terms and prices for such a license are available on request.

12.)Source code from other programs

libacarsd does not make use of any source code from other programmers! I have
personally made all routines in libacarsd.

13.)Latest versions

You can always download the latest versions from the homepage
http://www.acarsd.org.

14.)Acknowledgements

Many thanks to Kjell Fuglestad and François Guillet. Kjell provided
information about Squitters and uplink messages (unfortunately I am unable to
receive such messages) and François gave me the information required in order to
verify the ACARS checksums.

libacarsd documentation 12. December 2003

Libacarsd 1.46 ©. 2003,2004 by KjM <acarsd@acarsd.org> 20 of 20

15.)References

libacarsd works successful with the following applications:

�acarsd – Free ACARS Decoder for Linux and Windows (www.acarsd.org)

If you wish that your application is also listed here, feel free to mail me.

