A proposal for a standard process management
library

Emmanuel Deloget

March 28, 2013

1 Preamble

This document proposes an extension to the standard library.
The goal of this extension it so provide components and functions that can
be used to create, manage and query processes.

1.1 Rationale

Threads and processes are inherently similar. From an operating system point
of view, they may even be implemented using the same mechanisms (as this is
the case in the Linux operating system). The main difference between processes
and threads lies in the way they manage virtual memory (when available): mul-
tiple threads in a process live in the the same memory space, while multiple
processes on a system live in different memory space. There are advantages and
disadvantages to both:

e Little-to-none security mechanism is available to protect the memory space
used by a thread from another thread.

e Threads are lighter than processed. This is due to the fact that when
scheduling two different processes, the operating system must manage
their respective view of the memory and initialize the hardware MMU
accordingly. Threads do not share this requirement as they have the same
view of the memory.

This is of course a very high-level view since it does not take thread local storage
into account.

Process management is an important part of system programming. An im-
plementation would allow C++ to be used to create background programs (such
as daemons in POSIX environment or services on Windows) or to start other
programs or utilities (as done by a shell or a launcher UI). As of today, pro-
grammers have to use specific platform APIs to implement such functionalities
in their programs, making them difficult to port to other system architectures.

1.2 Design consideration

Since processes and threads are quite similar, it make sense to proposes a similar
interface for both classes. I decided to give this path a try and I believe it worked
quite well.

2 Proposal

Please note that both the numbering scheme and the text below are of course
subject to changes. They may not match the requirements of the text of the
C++ standard. Special Development notes are added to clarify some points or
to denote specific issues.

2.1 header <process> synopsys

This section describe components that can be used to create and manage pro-
cesses. | Note: these processes are intended to map one-to-one with operating
system processes. — end note |

namespace std {
class process;

void swap(process& x, process& y);

namespace this process {
process::id get id() noexcept;
template <typename Args...>
void exec(const string& cmd, Args&&... args);
}

}

2.2 class process

The class process provides a mechanism to create a new operating system pro-
cess, to join with a process (i.e., wait for a process to complete), and to perform
other operations that manage and query the state of a process. A process object
uniquely represents a particular operating system process. That representation
may be transferred to other process objects in such a way that no two process
objects simultaneously represent the same operating system process. An oper-
ating system process is detached when no process object represents that process.
Objects of class process can be in a state that does not represent an operating
system process. | Note: A process object does not represent an operating system
process after default construction, after being moved from, or after a successful
call to detach or join. — end note |

namespace std {

class process {

public:
typedef implementation—defined
native handle type;

class id;

process (process&) = delete;

process (const process&) = delete;

process& operator=(const process&) = delete;

process () = default;
process (process&& __p) noexcept;

template <typename F, typename ...Args>
explicit
process (F&& f, Args&&... args);

“process ();

process& operator=(process&& _ p) noexcept;
void swap(process& _ t) noexcept;

void detach ();
void join ();
bool joinable () const noexcept;

process::id get id() const noexcept;

native handle type native handle() const noexcept;
=
}

2.2.1 class process:id

namespace std {
class process::id
{

public:

id () noexcept;

b

bool operator==(process::id x, process::id y);
bool operator!=(process::id x, process::id y);

bool operator<=(process::id x, process::id y);
bool operator >=(process::id x, process::id y)
bool operator <(process::id x, process::id y);
bool operator >(process::id x, process::id y);

9

template <class Char, class Traits>
basic _ostream<Char, Traits>&
operator <<(
basic _ostream<Char, Traits>& out,
process ::id id);

An object of type process::id provides a unique identifier for each process and
a single distinct value for all process objects that do not represent an operating
system process. Fach operating system process has an associated process::id
object that is not equal to the process::id object of any other operating system
process and that is not equal to the process::id object of any std::process object
that does not represent any operating system process.

[Development note: at this point, we do not take into account some very
specific implementation such as PID namespace in Linux. Under Linux, two
processes can share the same process id (PID) if they do not belong to the same
PID namespace. Processes in a particular PID namespaces are unaware of the
existence of separate processes in a different namespace even if these processes
has the same PID. — end note |

process::id shall be a trivially copyable class. The library may reuse the value
of a process::id of a terminated operating system process that can no longer be
joined.

[Note: Relational operators allow process::id objects to be used as keys in
associative containers. — end note |

id() noexcept;
Effects: construct an object of type process::id.

Postconditions: the object does not represent an operating system process. |
Development note: this doesn’t mean that 0 is a good value to represent
the process id. Some systems may assignate PID 0 to a particular process.
— end note |

bool operator==(process::id x, process::id y);

Returns: true only if x and y represent the same operating system process or
neither x nor y represents any operating system process.

bool operator!=(process::id x, process::id y);

Returns: l(x ==1y)

bool operator<(process::id x, process::id y);
Returns: A value such that operator< is a total ordering.
bool operator<=(process::id x, process::id y);
Returns: (x <y) || x==1y)

bool operator>(process::id x, process::id y);
Returns: l(x <=y)

bool operator>=(process::id x, process::id y);
Returns: l(x <y)

template <class Char, class Traits>

basic_ostream<Char, Traits>&
operator<<(basic_ostream<Char, Traits>& out,
process::id id);

Effects: Inserts an unspecified text representation of id into out. For two
objects of type process::id x and y, if x == y the process::id objects shall
have the same text representation and if x != y the process::id objects
shall have distinct text representations.

Returns: out.

2.2.2 process constructors
process() noexcept;

Effects: Construct an object of type process that does not represent an oper-
ating system process.

Postcondition: get_id() !'= id()

template <class F, class... Args>
explicit process(F&& f, Args&&... args)

Requires: F and each Ti in Args shall satisfy the MoveConstructible require-
ments. INVOKE (DECAY_COPY (std::forward<F>(f)), DECAY_COPY
(std::forward<Adrgs> (args)) ...) shall be a valid expression.

Effects: Construct an object of type process. The new operating system pro-
cess executes INVOKE (DECAY_COPY (std::forward<F>(f)), DECAY_COPY
(std::forward<drgs> (args)) ...) with the calls to DECAY_COPY
being evaluated in the constructing process. Any return value from this
invocation is ignored. [Note: This implies that any exceptions not
thrown from the invocation of the copy of f will be thrown in the con-
structing process, not the new process. — end note | If the invoca-
tion of INVOKE (DECAY_COPY (std::forward<F>(f)), DECAY_COPY (
std:: forward<drgs> (args)) ...) terminates with an uncaught
exception, std: :terminate shall be called.

Synchronization: The completion of the invocation of the constructor syn-
chronizes with the beginning of the invocation of the copy of f.

Postcondition: get_id() == id(). xthis represents the newly started pro-
cess.

Throws: system_error if unable to start the new thread.

Error conditions: | Development note: not specified yet. — end note |

thread(thread&& x) noexcept;
Effects: Constructs an object of type process from x, and sets x to a default
constructed state.

Postconditions: x.get id() == id() and get _id() returns the value of x.get _id()
prior to the start of construction.

2.2.3 process destructor
“process();

If joinable() then terminate(), otherwise no effects. [Note: Either implic-
itly detaching or joining a joinable() process in its destructor could result in
difficult to debug correctness (for detach) or performance (for join) bugs en-
countered only when an exception is raised. Thus the programmer must ensure
that the destructor is never executed while the process is still joinable. — end
note |

2.2.4 process assignment
process& operator=(process&& x) noexcept;

Effects: If joinable(), calls terminate(). Otherwise, assigns the state of x
to *this and sets x to a default constructed state.

Postconditions: x.get_id() == id() and get_id () returns the value of x.get_id ()
prior to the assignment.

2.2.5 process members
void swap(process& x) noexcept;

Effects: Swaps the state of *this and x.

bool joinable() const noexcept;

Returns: get_id() != id()

void join(Q);
Requires: joinable() is true.
Effects: Blocks until the process represented by *this has completed.

Synchronization: The completion of the process represented by *this syn-
chronizes with the corresponding successful join() return. [Note: Oper-
ations on *this are not synchronized. — end note |

Postconditions: The process represented by *this has completed. get_id ()
== id ().

Throws: system_error when an exception is required

Error conditions: | Development note: not specified yet. — end note |

void detach();
Requires: joinable() is true.

Effects: The process represented by *this continues execution without the
calling process blocking. When detach() returns, *this no longer repre-
sents the possibly continuing operating system process. When the process
previously represented by *this ends execution, the implementation shall
release any owned resources.

Postcondition: get_id() == id().

Throws: system_error when an exception is required.

Error conditions: | Development note: not specified yet. — end note |

id get_id() const noexcept;

Returns: A default constructed id object if *this does not represent an op-
erating system process, otherwise this_process: :get_id() for the oper-
atnig system process represented by *this.

2.3 namespace this process

namespace std {
namespace this process {
process::id get id() noexcept;

template <typename Args...>
void exec(const string& cmd, Args&&... args);
}

}

process::id this_process::get_id() noexcept;

Returns: an objet of type process::id that uniquely identifies the current
process. No other process shall have this id and this process shall always
have this id. The object returned shall not compare equal to a default
constructed process: :id.

template <typename Args...>
void exec(const string& cmd, Args&&... args);

Effects: replaces the current process image by a new process image. cmd specify
the command to execute, and args... is the command argument list.
If the underlying system call executes, the function never returns and
the new process image shall have the same id as the calling process. |
Development note: the choice of std::string to represent the command is
due to the fact that not all operating systems allows unicode strings to
be used as commands. An open question on this subject is to be found
below. — end note |

Throws: system_error when the underlying system call fails to execute prop-
erly.

Error conditions: | Development note: not specified yet. — end note |

3 Technical considerations

3.1 About this process::exec()

The execve() system call which is used to implement this template function has
the following prototype:

int execve(const char xfilename
char xconst argv]|],
char xconst envp|[]);

This proposal eludes the envp parameter for now (it may appear in a sub-
sequent proposal, see below).

The argv argument is an array of char *const. In order to derive this array
from an args... list, we need a specialized mechanism. In the test implementa-
tion, T use std::stringstream (to convert any Args type into its string represen-
tation) and I allocate the individual C strings before I copy their content. The
relevant (tentative) code is:

void _ unpack to_strings(vector<charx>& 1)
{ __l.push_ back(NULL); }

template <typename _Arg0, typename... _ Args>
void _ unpack to_strings(
vector<chars>& 1,
_Arg0&& arg0,
_Args&&... args)
{
stringstream _ stream;
__stream << _ _arg0;
string out = _ stream.str ();
char *__s = new char|__out.length ()+1];
copy(__out.begin(), _ out.end(), _ s);
__s[__out.length ()] = 0;
__l.push back(__s);
__unpack to_strings(__ 1, args...);

Such kind of code is likely to be pervasive in C+-+11 codebases:
transforming an argument pack into a container of things (whatever the thing
is) is very likely to be an algorithm which may be used quite often by C+-+
programmers. There might be room here for a standard utility function, al-
though I understand that a generic algorithm might be difficult to devise. I
may replace the code above by a better version (see below, not definitive) but
ideally, a standard algorithm would be far better.

template <class _ Adder>
void _ unpack to(_ Adder&& _adder)

{1}

template <
class _ Adder,

class Arg0,
class ... Args>
void _ unpack to(

_Adder&& _ adder,
_Arg0&& arg0,
_Args&é&... args)
{
__adder(__arg0);
__unpack to(__adder, _ args...);

}

Another implementation would be based on a conversion from std::tuple<Args...>
(and thus would first require the creation of a tuple) to a container of things -
using either an implicit conversion or a user-supplied conversion.

3.2 Is it possible to implement fork() on a Windows sys-
tem?

The Windows process management API does not propose any strict equivalent
to POSIX fork(). This is outlined by Microsoft in. In the same document,
Microsoft endorse CreateProcess as a rough equivalent to the fork/exec use
case. While this use case is often said to be prevalent, it’s not the only use case
wa want to address.

However, our research found that the implementation of fork() is still feasible:

e The open source cygwin environment proposes a fork() function that works
like its POSIX counterpart.

e Scilab for Windows (another open source project) has implemented its
own version of fork() to help its conversion to the Windows platform.

e The Subsystem for Unix-based Applications (SUA) for Windows (also
known as Interix) proposes a fully compliant POSIX subsystem on top of
the Windows API, including a working fork() function.

10

Both implementation leverage the public, low-level NT API to create a child
process that the relevant characteristics with its parent process.

3.3 Further implementation notes

The full interface has already been implemented for both Linux and Windows
(a BSD implementation shall be quite similar to the Linux one), and the full
implementation has been open-sourced on github.

The proposed interface and the implementation differ in one point: the list
of error conditions proposed above is not respected - I found easier to just use
the value of errno. This is a bad idea as a future errno value set may contain
values that are not proposed by the current C++11 standard.

4 Open questions

4.1 Should the proposal implement environment variable
management?

I have the feeling that this would be an improvement over the current proposal.
Such extension would contain:

e A way to retrieve the value of an environment variable (i.e. a “getenv()”
function).

e A way to setup or kill a particular environment variable (i.e. “setenv()”
and “unsetenv()” functions).

e A way to list all environment variables (i.e. an “environ()” function that
would fetch the content of the POSIX C variable “environ”).

If such extension is implemented in this proposal then another overload of
this_process::exec() shall be needed as well.

4.2 Should exec() take a basic_string<> for its cmd pa-
rameter 7

Windows _execv() function has a wide string counterpart named _wexecv().
Most posix systems don’t have any equivalent to this function.

I believe that UFTS8 strings can be used to represent all possible command
names, but support for UTF16 command names might be of interest as well on
systems that support them. It’s possible to convert UTF16 to UTFS8 but the
conversion comes with a performance penalty.

11

