
iris toolbox
Reference Manual

Release 20150318

Runs in Matlab© R2010a or later

by
iris Solutions Team

18 March 2015

iris toolbox Reference Manual
Copyright © 2007–2015 iris Solutions Team.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-

CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

Preface

iris is a Matlab® toolbox for macroeconomic modeling, developed by the iris Solutions Team since
2001. It is free, open-source software distributed under BSD licence terms. The current version of
iris runs in Matlab R2010a or later; we though always recommend to update Matlab to the most
recent version.

iris has been designed as an integrated software package to support the development and operation
of macroeconomic models and model-based analytical systems. To that end, the toolbox integrates
core modeling functions (such as a flexible model file language, tools for simulation, estimation,
forecasting, or model diagnostics) with supporting infrastructure (such as time series analysis, data
management, or reporting) in a user-friendly command-oriented environment.

This document is a reference manual, not a user’s guide or tutorial. Check out the website,
www.iris-toolbox.com, for a number of tutorials covering a range of different topics.

The iris Solutions Team currently includes

• Jaromír Beneš (International Monetary Fund), team member since 2001.

• Michael Johnston (New Zealand Treasury), team member since 2013.

• Sergey Plotnikov (OGResearch), team member since 2013.

3

Contents

Part I — IRIS Sessions 6

1 Installing IRIS 7

2 Starting, quitting, and configuring IRIS 9

3 Getting Online Help 19

Part II — Model Development and Operation 21

4 Model File Language 22

5 Models (model Objects) 64

6 Reporting Equations (rpteq Objects) 162

7 Model Simulation Plans (plan Objects) 167

8 Grouping and Aggregation of Contributions (grouping Objects) 179

9 System Priors (systempriors Objects) 184

10 Posterior Simulator (poster Objects) 189

11 Probability Distributions (logdist Package) 197

12 Matrices with Named Rows and Columns (namedmat Objects) 205

Part III — Multivariate Time Series Analysis 210

13 Vector Autoregressions (VAR Objects) 211

14 Structural Vector Autoregressions (SVAR Objects) 250

4

15 Bayesian VAR Priors (BVAR Package) 258

16 Factor-Augmented Vector Autoregressions (FAVAR Objects) 263

Part IV — Time Series and Database Management 273

17 Dates and Date Ranges 274

18 Time Series (tseries Objects) 306

19 Time-Recursive Expressions (trec Objects) 381

20 Basic Database Management 387

Part V — Reporting and Publishing 421

21 PDF Reports (report Package and Objects) 422

22 Quick Database Plots 463

23 Graphics Functions (grfun Package) 467

5

Part I —

IRIS Sessions

6

Installing IRIS

1 Installing IRIS

Requirements

• Matlab R2010a or later.

Optional components

Optimization Toolbox

The Optimization Toolbox is needed to compute the steady state of non-linear models, and to run
estimation.

LaTeX

LaTeX is a free typesetting system used to produce PDF reports in IRIS.

Installing IRIS

Step 1

Download the latest IRIS zip archive, IRIS_Tbx_YYYYMMDD.zip, from the download area on the
website, and save it in a temporary location on your disk.

Step 2

If you are going to install IRIS in a folder where an older version already resides, you MUST first
delete the old version completely.

Step 3

Unzip the archive into a folder on your hard drive, e.g. C:\IRIS_Tbx. This folder is called the IRIS
root.

Step 4

After installing a new version of IRIS, we recommend that you remove all older versions of IRIS
from the Matlab search path, and restart Matlab.

Getting started

Each time you want to start working with IRIS, run the following line

>> addpath C:\IRIS_Tbx; irisstartup

7

Installing IRIS

where C:\IRIS_Tbx needs to be, obviously, replaced with the proper IRIS root folder chosen in Step
3 above.

Alternatively, you can put the IRIS root folder permanently on the Matlab seatch path (using the
menu File - Set Path), and only run the irisstartup command at the beginning of each IRIS
session.

See also the section on Starting and quitting IRIS P9 .

Syntax highlighting

You can get the IRIS model files syntax-highlighted. Syntax highlighting improves enormously the
readability of the files: it helps you understand the model better, and discover typos and mistakes
more quickly.

Add any number of extensions you want to use for model files (such as ’model’ or ’iris’, there
is really no limitation) to the Matlab editor. Open the menu Home - Preferences, unfold Edi-
tor/Debugger and choose Language. Make sure Matlab is selected at the top as the language. Use
the Add button in the File extensions panel to associate any number of new extensions with the
editor. Re-start the editor. The IRIS model files will be syntax highlighted from that moment on.

Components distributed with IRIS

X13-ARIMA-SEATS (formerly X12-ARIMA, X11-ARIMA)

Courtesy of the U.S. Census Bureau, the X13-ARIMA-SEATS (formerly X12-ARIMA) program is
now incoporated in, and distributed with IRIS. No extra installation or setup is needed.

Symbolic/automatic differentiator

Symbolic/automatic differentiator. IRIS is equipped with its own symbolic/automatic differentia-
tor, Sydney. There is no need to have the Symbolic Math Toolbox as was the case in earlier versions
of IRIS.

8

Starting, quitting, and configuring IRIS

2 Starting, quitting, and configuring IRIS

This section describes how to start and quit an IRIS session, and how to customise some of the
IRIS configuration options.

The most common way of starting an IRIS session (after you have installed the IRIS files on your
disk) is to run the following line in the Matlab command window:

addpath C:\IRIS_Tbx; irisstartup();

The first command, addpath, adds the IRIS root folder to the Matlab search path. The second
command, irisstartup, initialises IRIS and puts the other necessary IRIS subfolders, classes, and
internal packages on the search path. Never add these other subfolders, classes and packages to the
search path by yourself.

Starting and quitting IRIS

• irisstartup P15 - Start an IRIS session.
• irisfinish P10 - Close the current IRIS session.
• iriscleanup P10 - Remove IRIS from Matlab and clean up.

Getting information about IRIS

• irisget P11 - Query current IRIS config options.
• irisman P12 - Open IRIS Reference Manual PDF.
• irisroot P13 - Current IRIS root folder.
• irisrequired P12 - Throw error if the installed version of IRIS fails to comply with the

required minimum.
• irisversion P17 - Current IRIS version.

Changes in configuration

• irisset P14 - Change configurable IRIS options.
• irisreset P13 - Reset IRIS configuration options to start-up values.
• irisuserconfig P16 - User configuration file called at the IRIS start-up.

Getting on-line help on configuration functions

help config

help function_name

9

Starting, quitting, and configuring IRIS: irisget

iriscleanup
Remove IRIS from Matlab and clean up

Syntax

iriscleanup

Description

This script removes IRIS folders, including the root folder, from both the Matlab search path, and
clears persistent variables in some of the backend functions. A short message is displayed with the
list of folders removed from the path.

irisfinish
Close the current IRIS session

Syntax

irisfinish

irisfinish -shutup

Description

This function removes all IRIS subfolders from the temporary Matlab search path, and clears
persistent variables in some of the backend functions. A short message is displayed with the list of
subfolders removed from the path unless you call use the option -shutup. Note that the IRIS root
folder stays on the permanent Matlab path.

Example

10

Starting, quitting, and configuring IRIS: irisget

irisget
Query current IRIS config options

Syntax

Value = irisget(Option)

S = irisget()

Input arguments

• Option [char] - Name of the queried IRIS configuration option.

Output arguments

• Value [. . .] - Current value of the queried configuration option.

• S [struct] - Structure with all configuration options and their current values.

Description

You can view any of the modifiable options listed in irisset P14 , plus the following non-modifiable
ones (these cannot be changed by the user):

• ’userConfigPath=’ [char] - The path to the user configuration file called by the last executed
irisstartup P15 .

• ’irisRoot=’ [char] - The current IRIS root directory.

• ’version=’ [char] - The current IRIS version string.

When called without any input arguments, the irisget function returns a struct with all options
and their current values.

When used as input arguments in the irisget function, the option names are case-insensitive.
When referring to field names of an output struct returned by the irisget function, all option
names are lower-case and case-sensitive.

11

Starting, quitting, and configuring IRIS: irisrequired

Example

irisget(’dateFormat’)

ans =

YFP

g = irisget();

g.dateformat

ans =

YFP

irisman
Open IRIS Reference Manual PDF

Syntax

irisman

irisrequired
Throw error if the installed version of IRIS fails to comply with the required min-
imum

Syntax

irisrequired(V)

Input arguments

• V [char] - Text string describing the oldest acceptable distribution of IRIS.

Description

If the version of IRIS present on the computer does not comply with the minimum requirement v,
an error is thrown.

12

Starting, quitting, and configuring IRIS: irisroot

Example

All of the three calls are valid:

irisrequired(20111222);

irisrequired(’20111222’);

irisrequired 20111222;

irisreset
Reset IRIS configuration options to start-up values

Syntax

irisreset

Description

The irisreset function resets all configuration options to their default factory values, or to those
in the active irisuserconfig.m file (if one exists).

irisroot
Current IRIS root folder

Syntax

irisroot

X = irisroot()

Output arguments

• X [char] - Path to the IRIS root folder.

13

Starting, quitting, and configuring IRIS: irisset

Description

The irisroot function is equivalent to the following call to irisget P11

irisget(’irisroot’)

irisset
Change configurable IRIS options

Syntax

irisset(Option,Value)

irisset(Option,Value,Option,Value,...)

Input arguments

• Option [char] - Name of the IRIS configuration option that will be modified.

• Value [. . .] - New value that will be assigned to the option.

Modifiable IRIS configuration options

Dates and formats

• ’dateFormat=’ [char | ’YPF’] - Date format used to display dates in the command window,
CSV databases, and reports. Note that the default date format for graphs is controlled by
the ’plotdateformat=’ option. The default ‘YFP’ means that the year, frequency letter, and
period is displayed. See also help on dat2str P280 for more date formatting details. The
’dateformat=’ option is also found in many IRIS functions whenever it is relevant, and can
be used to overwrite the ’irisset=’ settings.

• ’freqLetters=’ [char | ’YHQBMW’] - Six letters used to represent the six possible frequencies
of IRIS dates, in this order: yearly, half-yearly, quarterly, bi-monthly, monthly, and weekly
(such as the ’Q’ in ’2010Q1’).

• ’months=’ [cellstr | {’January’,...,’December’}] - Twelve strings representing the names of
the twelve months; this option can be used whenever you want to replace the default English
names with your local language.

14

Starting, quitting, and configuring IRIS: irisstartup

• ’plotDateFormat=’ [char | struct(’yy’,’Y’,’hh’,’Y:P’,’qq’,’Y:P’,’bb’,’Y:P’,’mm’,’Y:P’,’ww’,’Y:P’)
] - Default date formats used to display dates in graphs including graphs in reports. The de-
fault date formats are set individually for each of the 6 ate frequencies in a struct with the
following fields: .yy, .hh, .qq, .bb, .mm, .ww. Dates with indeterminate frequency are printed
as plain numbers.

• ’tseriesFormat=’ [char | empty] - Format string for displaying time series data on the
screen. See help on the Matlab sprintf function for how to set up format strings. If empty
the default format of the num2str function is used.

• tseriesMaxWSpace=’ [numeric | 5] - Maximum number of white spaces printed between
individual columns of a multivariate tseries object on the screen.

• ’standinMonth=’ [numeric | ’last’ | *1*] - Month that will represent a lower-than-monthly-
frequency date if the month is part of the date format string.

• ’wwDay=’ [’Mon’ | ’Tue’ | ’Wed’ | ’Thu’ | ’Fri’ | ’Sat’ | ’Sun’] - Day of week that will
represent weeks in date strings, see dates/dat2str P280 , and when weekly tseries objects
are displayed on the screen.

External tools used by IRIS

• ’pdflatexPath=’ [char] - Location of the pdflatex.exe program. This program is called
to compile report and publish m-files. By default, IRIS attempts to locate pdflatex.exe by
running TeX’s kpsewhich, and which on Unix platforms.

• ’epstopdfPath=’ [char] - Location of the epstopdf.exe program. This program is called to
convert EPS graphics files to PDFs in reports.

Description

Example

irisstartup
Start an IRIS session

Syntax

irisstartup

irisstartup -shutup

15

Starting, quitting, and configuring IRIS: irisuserconfig

Description

We recommend that you keep the IRIS root directory on the permanent Matlab search path. Each
time you wish to start working with IRIS, you run irisstartup form the command line. At the
end of the session, you can run irisfinish P10 to remove IRIS subfolders from the temporary
Matlab search path, and to clear persistent variables in some of the backend functions.

The irisstartup P15 performs the following steps:

• Adds necessary IRIS subdirectories to the temporary Matlab search path.

• Removes redundant IRIS folders (e.g. other or older installations) from the Matlab search
path.

• Resets IRIS configuration options to default, updates the location of TeX/LaTeX executables,
and calls irisuserconfig P16 to modify the configuration option.

• Associates the default IRIS extensions with the Matlab Editor. If they had not been associated
before, Matlab must be re-started for the association to take effect.

• Prints an introductory message on the screen unless irisstartup is called with the -shutup

input argument.

irisuserconfig
User configuration file called at the IRIS start-up

Syntax

function c = irisuserconfig(c)

c.option = value;

c.option = value;

...

end

Description

You can create your own configuration file to modify the general IRIS options of your choosing at
each IRIS start-up. The file must be saved as irisuserconfig.m on the Matlab search path.

16

Starting, quitting, and configuring IRIS: irisversion

The irisuserconfig.m file must be an m-file function taking one input argument (a struct with the
factory settings), and returning one output argument (a struct with the user-modified settings);
see irisset P14 for the list of options you can change. In addition, you can also add your own
new options, which will be then also accessible through irisset P14 and irisget P11 .

Example

If you want the names of months to be displayed in Finnish, create the following m-file and save it
in a folder which is on the Matlab search path:

function c = irisuserconfig(c)

c.months = { ...

’Tammikuu’,’Helmikuu’,’Maaliskuu’, ...

’Huhtikuu’,’Toukokuu’,’Kesakuu’, ...

’Heinakuu’,’Elokuu’,’Syyskuu’, ...

’Lokakuu’,’Marraskuu’,’Joulukuu’};

end

This modification will take effect after you next run irisstartup P15 . Your graphs will be then
fluent in Finnish:

x = tseries(mm(2009,1):mm(2009,6),@rand);

plot(x,’dateformat’,’MmmmYY’);

irisversion
Current IRIS version

Syntax

irisversion

X = irisversion()

Output arguments

• X [char] - String describing the currently installed IRIS version.

17

Starting, quitting, and configuring IRIS: irisversion

Description

The version string is the distribution date in a yyyymmdd format. The irisversion function is
equivalent to the call irisget(’version’).

18

Getting Online Help

3 Getting Online Help

Use either idoc or help to get help on IRIS functions:

• idoc displays the help topic in an HTML browser window.
• help displays the help topic in the command window,

The following help topics are available:

idoc dates

idoc dates/function_name

idoc dbase

idoc dbase/function_name

idoc modellang

idoc modellang/keyword

idoc model

idoc model/function_name

idoc rpteq

idoc rpteq/function_name

idoc plan

idoc plan/function_name

idoc grouping

idoc grouping/function_name

idoc poster

idoc poster/function_name

idoc logdist

idoc logdist/function_name

idoc namedmat

idoc namedmat/function_name

idoc VAR

idoc VAR/function_name

idoc SVAR

idoc SVAR/function_name

idoc BVAR

idoc BVAR/function_name

idoc FAVAR

idoc FAVAR/function_name

idoc dates

idoc dates/function_name

idoc tseries

idoc tseries/function_name

idoc trec

19

Getting Online Help

idoc trec/function_name

idoc dbase

idoc dbase/function_name

idoc report

idoc report/function_name

idoc grfun

idoc grfun/function_name

20

Part II —

Model Development and Operation

21

Model File Language

4 Model File Language

Model file language is used to write model files. The model files are plain text files (saved under
any filename with any extension) that describes the model: its equations, variables, parameters,
etc. The model file, on the other hand, does not describe what to do with the model. To run the
tasks you want to perform with the model, you need first to load the model file into Matlab using
the model P122 function. This function creates a model object. Then you write your own m-files
using Matlab and IRIS functions to perform the desired tasks with the model object.

Why do all the keywords (except pseudofunctions) start with an exclamation point? Why do the
comments have the same style as in Matlab? Why do substitutions and steady-state references use
the dollar sign? Because this way, you can get the model files syntax-highlighted in the Matlab
editor. Syntax highlighting improves enormously the readability of the files, and helps understand
the model more quickly. See the setup instructions P7 for more details.

Variables, parameters, substitutions and functions

• !transition_variables P49 - List of transition variables.
• !transition_shocks P48 - List of transition shocks.
• !measurement_variables P41 - List of measurement variables.
• !measurement_shocks P40 - List of measurement shocks.
• !exogenous_variables P28 - List of exogenous variables.
• !parameters P42 - List of parameters.
• !autoexogenise P27 - Definition of variable/shock pairs for use in autoexogenised simulation
plans.

Equations

• !transition_equations P47 - Block of transition equations.
• !measurement_equations P39 - Block of measurement equations.
• !dtrends P27 - Block of deterministic trend equations.
• !links P37 - Define dynamic links.

Linearised and log-linearised variables

• !log_variables P38 - List of log-linearised variables.
• !all_but P26 - Inverse list of log-linearised variables.
• <...> P55 - Regular expression in log variable list.

22

Model File Language

Special operators

• !! P25 - Steady-state version of an equation.
• !ttrend P50 - Linear time trend in deterministic trend equations.
• {...} P62 - Lag or lead.
• & P53 - Reference to the steady-state level of a variable.
• =# P55 - Mark an equation for exact non-linear simulation.
• ’...!!...’ P54 - Beginning of aliasing inside descriptions and labels.

Pseudofunctions

Pseudofunctions do not start with an exclamation point.

• min P58 - Define loss function for optimal policy.
• diff P55 - First difference pseudofunction.
• dot P57 - Gross rate of growth pseudofunction.
• difflog P56 - First log-difference pseudofunction.
• movavg P59 - Moving average pseudofunction.
• movprod P61 - Moving product pseudofunction.
• movsum P60 - Moving sum pseudofunction.

Preparser control commands

• !substitutions P44 - Define text substitutions.
• $[...]$ P51 - Pseudosubstitutions.
• !import P36 - Include the content of another model file.
• !export P29 - Create a carry-around file to be saved on the disk.
• !if...!elseif...!else...!end P34 - Choose block of code based on logical condition.
• !switch...!case...!end P45 - Switch among several cases based on expression.
• !for...!do...!end P30 - For loop for automated creation of model code.
• % P52 - Line comments.
• %{...%} P52 - Block comments.

Getting on-line help on model file language

When getting help on model file language, type the names of the keywords and commands without
the exclamation point:

help modellang

help modellang/keyword

23

Model File Language

help modellang/command

help modellang/pseudofunction

Matlab functions and user functions in model files

You can use any of the built-in functions (Matlab functions, functions within the Toolboxes you
have on your computer, and so on). In addition, you can also use your own functions (written as
an m-file) as long as the m-file is on the Matlab search path or in the current directory.

In your own m-file functions, you can also (optionally) supply the first derivatives that will be used
to compute Taylor expansions when the model is being solved, and the second derivatives that will
be used when the function occurs in a loss function.

When asked for the derivatives, the function is called with two extra input arguments on top of
that function’s regular input arguments. The first extra input argument is a text string ’diff’

(indicating the call to the function is supposed to return a derivative). The second extra input
argument is a number or a vector of two numbers; it determines with respect to which input
argument or arguments the first derivative or the second derivative is requested.

For instance, your function takes three input arguments, myfunc(x,y,z). To be able to supply
derivates avoiding thus numerical differentiation, the function must be written so that the following
three calls

myfunc(x,y,z,’diff’,1)

myfunc(x,y,z,’diff’,2)

myfunc(x,y,z,’diff’,3)

return the first derivative wrt to the first, second, and third input argument, respectively, while

myfunc(x,y,z,’diff’,[1,2])

returns the second derivative wrt to the first and second input arguments. Note that second
derivatives are only needed for functions that occur in an equation defining optimal policy objective,
min P58 .

If any of these calls fail, the respective derivative will be simply evaluated numerically.

Basic rules IRIS model files

• There can be four types of equations in IRIS models: transition equations which are simply the
endogenous dynamic equations, measurement equations which link the model to observables,
deterministic trend equations which can be added at the top of measurement equations, and
dynamic links which can be used to link some parameters or steady-state values to each other.

24

Model File Language: !!

• There can be two types of variables and two types of shocks in IRIS models: transition
variables and shocks, and measurement variables and shocks.

• Each model must have at least one transition (aka endogenous) variable and one transition
equation.

• Each variable, shock, or parameter must be declared in the appropriate declaration section.

• The declaration sections and equations sections can be written in any order.

• You can have as many declaration sections or equations sections of the same kind as you wish
in one model file; they all get combined together at the time the model is being loaded.

• Transition variables can occur with lags and leads in transition equations. Transition variables
cannot, though, have leads in measurement equations.

• Measurement variables and the shocks cannot have any lags or leads.

• Transition shocks cannot occur in measurement equations, and the measurement shocks can-
not occur in transition equations.

• Exogenous variables can only occur in dtrends (deterministic trend equations), and must be
always supplied in the input database to commands like model/simulate, model/jforecast,
model/filter, model/estimate, etc. They are not returned in the output databases.

• You can choose between linearisation and log-linearisation for each individual transition and
measurement variable. Shocks are always linearised. Exogenous variables must be always
introduced so that their effect on the respective measurement variable is linear.

!!
Steady-state version of an equation

Syntax

FullEquation !! SteadyStateEquation;

Description

For each transition or measurement equation, you can provide a separate steady-state version of
it. The steady-state version is used when you run the functions sstate P146 and chksstate P77 ,
the latter unless you change the option ’eqtn=’. This is useful when you can substantially simplify

25

Model File Language: !autoexogenise

some parts of the full dynamic equations, and help therefore the numerical solver to achieve faster
and possibly laso more accurate results.

Why is a double exclamation point, !!, used to start the steady-state versions of equations? Because
if you associate your model file extension(s) (such as ’mod’ or ’model’) with the Matlab editor,
anything after an exclamation point is displayed red making it easier to spot the steady-state
equations.

Example

The following steady state version will be, of course, valid only in stationary models where we can
safely remove lags and leads.

Lambda = Lambda{1}*(1+r)*beta !! r = 1/beta - 1;

Example

log(A) = log(A{-1}) + epsilon_a !! A = 1;

!all_but
Inverse list of log-linearised variables

Syntax

!log_variables

!all_but

VariableName, VariableName,

VariableName, ...

Description

See help on !log_variables P38 .

26

Model File Language: !dtrends

!autoexogenise
Definition of variable/shock pairs for use in autoexogenised simulation plans

Syntax

!autoexogenise

VariableName := ShockName; VariableName := ShockName;

VariableName := ShockName;

Description

The section !autoexogenise defines variable/shock pairs that can be used to automate the creation
of exogenise-endogenise types of simulation plans P167 using the function autoexogenise P168 .

Example

!dtrends
Block of deterministic trend equations

Syntax for linearised measurement variables

!dtrends

VariableName += Expression;

VariableName += Expression;

...

Syntax for log-linearised measurement variables

!dtrends

log(VariableName) += Expression;

log(VariableName) += Expression;

...

27

Model File Language: !exogenous_variables

Syntax with equation labels

!dtrends

’Equation label’ VariableName += Expression;

’Equation label’ LOG(VariableName) += Expression;

Description

Example

!dtrends

Infl += pi_;

Rate += rho_ + pi_;

!exogenous_variables
List of exogenous variables

Syntax

!exogenous_variables

VariableName, VariableName, ...

...

Syntax with descriptors

!exogenous_variables

VariableName, VariableName, ...

’Description of the variable...’ VariableName

Syntax with steady-state values

!exogenous_variables

VariableName, VariableName, ...

VariableName = Value

28

Model File Language: !export

Description

The !exogenous_variables keyword starts a new declaration block for exogenous variables, i.e. vari-
ables that can appear only in !dtrends P27 equations. The names of the variables must be sep-
arated by commas, semi-colons, or line breaks. You can have as many declaration blocks as you
wish in any order in your model file: They all get combined together when you read the model file
in. Each variable must be declared (exactly once).

You can add descriptors to the variables (enclosed in single or double quotes, preceding the name
of the variable); these will be stored in, and accessible from, the model object. You can also assign
steady-state values to the variables straight in the model file (following an equal sign after the name
of the variable); this is, though, rather rare and unnecessary practice because you can assign and
change steady-state values more conveniently in the model object.

Example

!exogenous_variables

X, ’Tax effects’ Y

’Population growth effects’ Z = 0 + 0.5i;

!export
Create a carry-around file to be saved on the disk

Syntax

!export(FileName)

FileContents

!end

Description

You can include in the model file the contents of files you need or want to carry around together
with the model; a typical example is your own m-file functions used in the model equations.

The file or files are created and save under the name specified in the !export keyword at the
time you load the model using the function model P122 . The contents of the export files is are
also stored in the model objects. You can manually re-create and re-save the files by running the
function export P91 .

29

Model File Language: !for...!do...!end

If no filename is provided or FileName is empty, the corresponding !export block is discarded with
no error or warning.

!for...!do...!end
For loop for automated creation of model code

Abbreviated syntax (cannot be nested)

!for

ListOfTokens

!do

Template

!end

Full syntax

!for

?ControlName = ListOfTokens

!do

Template

!end

Description

Use the ‘ !for. . . !do. . . !end’ command to specify a template and let the IRIS preparser automatically
create multiple instances of the template by iterating over a list of tokens. The preparser cycles
over the individual strings from the list; in each iteration, the current string is used to replace all
occurences of the control variable in the template. The name of the control name is either implicitly
a question mark, ‘?’, in the abbreviated syntax, or any string starting with a question mark and not
containing blank spaces, question marks (other than the leading question mark), colons or periods;
for example, ‘?x’, ‘?#’, ‘?NAME+’.

The tokens (text strings) in the list must be separated by commas, blank spaces, or line breaks and
they themselves must not contain any of those. In each iteration,

• all occurrences of the control variable in the template are replaced with the currently processed
string;

30

Model File Language: !for...!do...!end

• all occurrences in the template of ?.ControlName are replaced with the currently processed
string converted to lower case; this option is NOT available with the abbreviated syntax;

• all occurrences in the template of ?:ControlName are replaced with the currently processed
string converted to upper case; this option is NOT available with the abbreviated syntax;

The list of tokens can be based on Matlab expressions. Use the pseudosubstitution P51 syntax to
this end: Enclose an expression in dollar-square brackets, $[...]$. The expression must evaluate
to either a numeric vector, a char vector, or a cell array of numerics and/or strings; the value will
be then converted to a comma-separted list.

Example

In a model code file, instead of writing a number of definitions of growth rates like the following
ones

dP = P/P{-1} - 1;

dW = W/W{-1} - 1;

dX = X/X{-1} - 1;

dY = Y/Y{-1} - 1;

you can use ‘ !for. . . !do. . . !end’ as follows:

!for

P, W, X, Y

!do

d? = ?/?{-1} - 1;

!end

Example

We redo the example 1, but using now the fact that you can have as many variable declaration
sections or equation sections as you wish. The ‘ !for. . . !do. . . !end’ structure can therefore not only
produce the equations for you, but also make sure all the growth rate variables are properly declared.

!for

P, W, X, Y

!do

!transition_variables

d?

31

Model File Language: !for...!do...!end

!transition_equations

d? = ?/?{-1} - 1;

!end

The preparser expands this structure as follows:

!transition_variables

dP

!transition_equations

dP = P/P{-1} - 1;

!transition_variables

dW

!transition_equations

dW = W/W{-1} - 1;

!transition_variables

dX

!transition_equations

dX = X/X{-1} - 1;

!transition_variables

dY

!transition_equations

dY = Y/Y{-1} - 1;

Obviously, you now do not include the growth rate variables in the section where you declare the
rest of the variables.

Example

In a model code file, instead of writing a number of autoregression processes like the following ones

X = rhox*X{-1} + ex;

Y = rhoy*Y{-1} + ey;

Z = rhoz*Z{-1} + ez;

you can use ‘ !for. . . !do. . . !end’ as follows:

!for

?# = X, Y, Z

!do

?# = rho?.#*?{-1} + e?.#;

!end

32

Model File Language: !for...!do...!end

Example

We redo Example 3, but now for six variables named ‘A1’, ‘A2’, ‘B1’, ‘B2’, ‘C1’, ‘C2’, nesting two
‘ !for. . . !do. . . !end’ structures one within the other:

!for

?letter = A, B, C

!do

!for

?number = 1, 2

!do

?letter?number = rho?.letter?number*?letter?number{-1}

+ e?.letter?number;

!end

!end

The preparser produces the following six equations:

A1 = rhoa1*A1{-1} + ea1;

A2 = rhoa2*A2{-1} + ea2;

B1 = rhob1*B1{-1} + eb1;

B2 = rhob2*B2{-1} + eb2;

C1 = rhoc1*C1{-1} + ec1;

C2 = rhoc2*C2{-1} + ec2;

Example

We use a Matlab expression (the colon operator) to simplify the list of tokens. The following block
of code

!for

1, 2, 3, 4, 5, 6, 7

!do

a? = a?{-1} + res_a?;

!end

can be simplified as follow:

!for

$[1 : 7]$

33

Model File Language: !if...!elseif...!else...!end

!do

a? = a?{-1} + res_a?;

!end

!if...!elseif...!else...!end
Choose block of code based on logical condition

Syntax with else and elseif clauses

!if Condition1

Block1

!elseif Condition2

Block2

!elseif Condition3

...

!else

Block3

!end

Syntax with an else clause only

!if Condition1

Block1

!else

Block2

!end

Syntax without an else clause

!if Condition

Block1

!end

34

Model File Language: !if...!elseif...!else...!end

Description

The !if...!elseif...!else...!end command works the same way as its counterpart in the Matlab
programming language.

Use the !if...!else...!end command to create branches or versions of the model code. Whether
a block of code in a particular branch is used or discarded, depends on the condition after the
opening !if command and the conditions after subsequent !elseif commands if present. The
condition must be a Matlab expression that evaluates to true or false. The condition can refer to
model parameters, or to other fields included in the database passed in through the option ‘assign=’
in the model P122 function.

Example

!if B < Inf

% This is a linearised sticky-price Phillips curve.

pi = A*pi{-1} + (1-A)*pi{1} + B*log(mu*rmc);

!else

% This is a flexible-price mark-up rule.

rmc = 1/mu;

!end

If you set the parameter B to Inf in the parameter database when reading in the model file, then
the flexible-price equatio, rmc = 0, is used and the Phillips curve equation discarded. To use the
Phillips curve equation instead, you need to re-read the model file with B set to a number other
than Inf. In this example, B needs to be, obviously, declared as a model parameter.

Example

!if exogenous == true

x = y;

!else

x = rho*x{-1} + epsilon;

!end

When reading the model file in, create a parameter database, include at least a field named
exogenous in it, and use the ’assign=’ option to pass the database in. Note that you do not
need to declare exogenous as a parameter in the model file.

P = struct();

P.exogenous = true;

35

Model File Language: !links

...

m = model(’my.model’,’assign=’,P);

In this case, the model will contain the first equation, x = rho*x{-1} + epsilon; will be used,
and the other discarded. To use the other equation, x = y, you need to re-read the model file with
exogenous set to false:

P = struct();

P.exogenous = false;

...

m = model(’my.model’,’assign=’,P);

You can also use an abbreviate syntax to assign control parameters when readin the model file; for
instance

m = model(’my.model’,’exogenous=’,true);

!import
Include the content of another model file

Syntax

!import(FileName)

Description

The !import command loads the content of the specified file FileName. This allows you to split the
model code into several parts (each saved in a separate file) and to reuse some bits of the model.

Example

!import(mesurement_equations.model)

36

Model File Language: !log_variables

!links
Define dynamic links

Syntax

!links

ParameterName := Expression;

VariableName := Expression;

Syntax with equation labels

!links

’Equation label’ ParameterName := Expression;

’Equation label’ VariableName := Expression;

Description

The dynamic links relate a particular parameter (or steady-state value) on the LHS to a function of
other parameters or steady-state values on the RHS. Expression can be any expression involving
parameter names, variables names, Matlab functions and constants, or your own m-file functions
on the path; it must not refer to any lags or leads. Expression must evaluate to a single number.
It is the user’s responsibility to properly handle the imaginary (i.e. growth) part of the steady-state
values.

The links are automatically refreshed in solve P142 , sstate P146 , and chksstate P77 functions,
and also in each iteration within the estimate P83 function. They can also be refreshed manually
by calling refresh P127 .

The links must not involve parameters occuring in !dtrends P27 equations that will be estimated
using the ’outoflik=’ option of the estimate P83 function.

Example

!links

R := 1/beta;

alphak := 1 - alphan - alpham;

37

Model File Language: !log_variables

!log_variables
List of log-linearised variables

Syntax

!log_variables

VariableName, VariableName,

VariableName, ...

Syntax with inverted list

!log_variables

!all_but

VariableName, VariableName,

VariableName, ...

Syntax with regular expression(s)

!log_variables

VariableName, VariableName,

VariableName, ...

<REGEXP>, <REGEXP>, ...

Description

List all log variables under this headings. Only measurement or transition variables can be declared
as log variables.

In non-linear models, all variables are linearised around the steady state or a balanced-growth path.
If you wish to log-linearise some of them instead, put them on a !log_variables list. You can also
use the !all_but keyword to indicate an inverse list: all variables will be log-linearised except those
listed.

To create the list of log variables, you can also use regular expressions, each enlosed in a pair of
angle brackets, < and >. All measurement and transition variables whose names match one of the
regular expressions will be declared as log variables. See also help on regular expressions in the
Matlab documentation.

38

Model File Language: !measurement_equations

Example

The following block of code will cause the variables Y, C, I, and K to be declared as log variables,
and hence log-linearised in the model solution, while r and pie will be linearised:

!transition_variables

Y, C, I, K, r, pie

!log_variables

Y, C, I, K

You can do the same job by writing

!transition_variables

Y, C, I, K, r, pie

!log_variables

!all_but

r, pie

Example

We again achieve the same result as above, but now using a regular expression.

!transition_variables

Y, C, I, K, r, pie

!log_variables

<[A-Z]\w*>

The regular expression [A-Z]\w* selects all variables whose names start with an upper-case letter.
Hence, again the variables Y, C, I, and K will be declared as log variables.

!measurement_equations
Block of measurement equations

39

Model File Language: !measurement_shocks

Syntax

!measurement_equations

Equation1;

Equation2;

Equation3;

...

Syntax with equation labels

!measurement_equations

Equation1;

’Equation label’ Equation2;

Equation3;

...

Description

The !measurement_equations keyword starts a new block of measurement equations; the equations
can stretch over multiple lines and must be separated by semi-colons. You can have as many
equation blocks as you wish in any order in your model file: They all get combined together when
you read the model file in.

You can add descriptive labels to the equations (in single or double quotes, preceding the equation);
these will be stored in, and accessible from, the model object.

Example

!measurement_equations

’Inflation observations’ Infl = 40*(P/P{-1} - 1);

!measurement_shocks
List of measurement shocks

40

Model File Language: !measurement_variables

Syntax

!measurement_shocks

ShockName, ShockName, ...

...

Syntax with descriptors

!measurement_shocks

ShockName, ShockName, ...

’Description of the shock...’ ShockName

Description

The !measurement_shocks keyword starts a new declaration block for measurement shocks (i.e. shocks
or errors to measurement equation); the names of the shocks must be separated by commas, semi-
colons, or line breaks. You can have as many declaration blocks as you wish in any order in your
model file: They all get combined together when you read the model file in. Each shock must be
declared (exactly once).

You can add descriptors to the shocks (enclosed in single or double quotes, preceding the name of
the shock); these will be stored in, and accessible from, the model object.

Example

!measurement_shocks

u1, ’Output measurement error’ u2

u3

!measurement_variables
List of measurement variables

Syntax

!measurement_variables

VariableName, VariableName, ...

...

41

Model File Language: !parameters

Syntax with descriptors

!measurement_variables

VariableName, VariableName, ...

’Description of the variable...’ VariableName

Syntax with steady-state values

!measurement_variables

VariableName, VariableName, ...

VariableName = Value

Description

The !measurement_variables keyword starts a new declaration block for measurement variables
(i.e. observables); the names of the variables must be separated by commas, semi-colons, or line
breaks. You can have as many declaration blocks as you wish in any order in your model file: They
all get combined together when you read the model file in. Each variable must be declared (exactly
once).

You can add descriptors to the variables (enclosed in single or double quotes, preceding the name
of the variable); these will be stored in, and accessible from, the model object. You can also assign
steady-state values to the variables straight in the model file (following an equal sign after the name
of the variable); this is, though, rather rare and unnecessary practice because you can assign and
change steady-state values more conveniently in the model object.

For each individual variable in a non-linear model, you can also decide if it is to be linearised or
log-linearised by listing its name in the !log_variables P38 section.

Example

!measurement_variables

pie, ’Real output’ Y

’Real exchange rate’ Z = 1 + 1.05i;

!parameters
List of parameters

42

Model File Language: !substitutions

Syntax

!parameters

ParameterName, ParameterName, ...

...

Syntax with descriptors

!parameters

ParameterName, ParameterName, ...

’Description of the parameter...’ ParameterName

Syntax with steady-state values

!parameters

ParameterName, ParameterName, ...

ParameterName = value

Description

The !parameters keyword starts a new declaration block for parameters; the names of the param-
eters must be separated by commas, semi-colons, or line breaks. You can have as many declaration
blocks as you wish in any order in your model file: They all get combined together when you read
the model file in. Each parameters must be declared (exactly once).

You can add descriptors to the parameters (enclosed in single or double quotes, preceding the name
of the parameter); these will be stored in, and accessible from, the model object. You can also
assign parameter values straight in the model file (following an equal sign after the name of the
parameter); this is, though, rather rare and unnecessary practice because you can assign and change
parameter values more conveniently in the model object.

Example

!parameters

alpha, ’Discount factor’ beta

’Labour share’ gamma = 0.60

43

Model File Language: !substitutions

!substitutions
Define text substitutions

Syntax

!substitutions

SubsName := TextString;

SubsName := TextString;

...

Description

The !substitutions starts a block with substitution definitions. The definition of each substitution
must begin with the name of the substitution, followed by a colon-equal sign, :=, and a text string
ended with a semi-colon. The semi-colon is not part of the substitution.

The substitutions can be used in any of the model equations, i.e. in transition equations P47 ,
measurement equations P39 , deterministic trend equations P27 , and dynamic links P37 . Each
occurence of the name of a substitution enclosed in dollar signs, i.e. $substitution_name$, in
model equations will be replaced with the text string from the substitution’s definition.

Substitutions can also refer to other substitutions; make sure, though, that they are not recursive.
Also, remember to parenthesise the definitions of the substitutions (or the references to them) in
the equations properly so that the resulting mathematical expressions are evaluated properly.

Example

!substitution

a := ((omega1+omega2)/(omega1+omega2+omega3));

!transition_equations

X = a^2*Y + (1-a^2)*Z;

In this example, we assume that omega1, omega2, and omega3 are declared as parameters. The
equation will expand to

X = ((omega1+omega2)/(omega1+omega2+omega3))^2*Y + ...

(1-((omega1+omega2)/(omega1+omega2+omega3))^2)*Z;

44

Model File Language: !switch...!case...!otherwise...!end

Note that if had not used the outermost parentheses in the definition of the substitution, the
resulting expression would not have given us what we meant: The square operator would have only
applied to the denominator.

!switch...!case...!otherwise...!end
Switch among several cases based on expression

Syntax with an otherwise clause

!switch Expr

!case Balue1

Block1

!case Balue2

Block2

...

!otherwise

OtherwiseBlock

!end

Syntax without an otherwise clause

!switch Expr

!case Value1

Block1

!case Value2

Block2

...

!end

Description

The !switch...!case...!otherwise...!end command works the same way as its counterpart in
the Matlab programming language.

Use the !switch...!case...!end command to create a larger number of branches of the model
code. Which block of code is actually read in and which blocks are discarded depends on which
value in the !case clauses matches the value of the !switch expression. This works exactly as the

45

Model File Language: !transition_equations

switch...case...end command in Matlab. The expression after the !switch part of the command
must must be a valid Matlab expression, and can refer to the model parameters, or to other fields
included in the parameter database passed in when you run the model P122 function; see the option
’assign=’ P122 .

If the expression fails to be matched by any value in the !case clauses, the branch in the !otherwise
clause is used. If it is a !switch command without the !otherwise clause, the whole command is
discarded. The Matlab function isequal is used to match the !switch expression with the !case

values.

Example

!switch policy_regime

!case ’IT’

r = rho*r{-1} + (1-rho)*kappa*pie{4} + epsilon;

!case ’Managed_exchange_rate’

s = s{-1} + epsilon;

!case ’Constant_money_growth’

m-m{-1} = m{-1}-m{-2} + epsilon;

!end

When reading the model file in, create a parameter database, include at least a field named
policy_regime in it, and use the option ’assign=’ to pass the database in. Note that you do
not need to declare policy_regime as a parameter in the model file.

P = struct();

P.policy_regime = ’Managed_exchange_rate’;

...

m = model(’my.model’,’assign’,P);

In this case, the managed exchange rate policy rule, s = s{-1} + epsilon; is read in and the rest
of the !switch command is discarded. To use another branch of the !switch command you need to
re-read the model file again with a different value assigned to the policy_regime field of the input
database.

46

Model File Language: !transition_equations

!transition_equations
Block of transition equations

Syntax

!transition_equations

Equation1;

Equation2;

Equation2;

...

Abbreviated syntax

!equations

Equation1;

Equation2;

Equation3;

...

Syntax with equation labels

!transition_equations

Equation1;

’Equation label’ Equation2;

Equation3;

...

Description

The !transition_equations keyword starts a new block of transition equations (i.e. endogenous
equations); the equations can stretch over multiple lines and must be separated by semi-colons.
You can have as many equation blocks as you wish in any order in your model file: They all get
combined together when you read the model file in.

You can add descriptive labels to the equations (in single or double quotes, preceding the equation);
these will be stored in, and accessible from, the model object.

47

Model File Language: !transition_shocks

Example

!transition_equations

’Euler equation’ C{1}/C = R*beta;

!transition_shocks
List of transition shocks

Syntax

!transition_shocks

ShockName, ShockName, ...

...

Abbreviated syntax

!shocks

ShockName, ShockName, ...

...

Syntax with descriptors

!transition_shocks

ShockName, ShockName, ...

’Description of the shock...’ ShockName

Description

The !transition_shocks keyword starts a new declaration block for transition shocks (i.e. shocks
to transition equation); the names of the shocks must be separated by commas, semi-colons, or line
breaks. You can have as many declaration blocks as you wish in any order in your model file: They
all get combined together when you read the model file in. Each shock must be declared (exactly
once).

You can add descriptors to the shocks (enclosed in single or double quotes, preceding the name of
the shock); these will be stored in, and accessible from, the model object.

48

Model File Language: !transition_variables

Example

!transition_shocks

e1, ’Aggregate supply shock’ e2

e3

!transition_variables
List of transition variables

Syntax

!transition_variables

VariableName, VariableName, ...

...

Abbreviated syntax

!variables

VariableName, VariableName, ...

...

Syntax with descriptors

!transition_variables

VariableName, VariableName, ...

’Description of the variable...’ VariableName

Syntax with steady-state values

!transition_variables

VariableName, VariableName, ...

VariableName = Value

49

Model File Language: [:::]

Description

The !transition_variables keyword starts a new declaration block for transition variables (i.e. en-
dogenous variables); the names of the variables must be separated by commas, semi-colons, or line
breaks. You can have as many declaration blocks as you wish in any order in your model file: They
all get combined together when you read the model file in. Each variable must be declared (exactly
once).

You can add descriptors to the variables (enclosed in single or double quotes, preceding the name
of the variable); these will be stored in, and accessible from, the model object. You can also assign
steady-state values to the variables straight in the model file (following an equal sign after the name
of the variable); this is, though, rather rare and unnecessary practice because you can assign and
change steady-state values more conveniently in the model object.

For each individual variable in a non-linear model, you can also decide if it is to be linearised or
log-linearised by listing its name in the !log_variables P38 section.

Example

!transition_variables

pie, ’Real output’ Y

’Real exchange rate’ Z = 1 + 1.05i;

!ttrend
Linear time trend in deterministic trend equations

Syntax

!ttrend

Description

Example

!dtrends

log(Y) += a*!ttrend;

50

Model File Language: [:::]

[:::]

Pseudosubstitutions

Syntax

$[Expr]$

Description

The expression Expr enclosed within $[...]$ is evaluated as a Matlab expression, and converted to
a character string. The expression may refer to parameters passed into the function model P122 ,
or to !for P30 loop control variable names. The expression must evaluate to a scalar number, a
logical scalar, or character string.

Example

The following line of code

pie{$[K]$}

which is assumed to be part of a model file named my.model, will expand to

pie{3}

in either of the following two calls to the function model:

model(’my.model’,’K=’,3);

P = struct();

P.K = 3;

model(’my.model’,’assign=’,P);

Example

The following !for P30 loop

51

Model File Language: %{...%}

!for

$[2 : 4]$

!do

x? = x$[?-1]${-1};

!end

will expand to

x2 = x1{-1};

x3 = x2{-1};

x4 = x3{-1};

%
Line comments

Syntax

% Anything from the percent sign until the end of line is discarded.

Description

Example

%{...%}
Block comments

Syntax

%{ Anything between

the opening block comment sign

and the closing block comment sign

is discarded %}

52

Model File Language: &

Description

Unlike in Matlab, the opening and closing block comment signs do not need to stand alone on
otherwise blank lines. You can even have block comments contained withing a single line.

Example

!transition_equations

x = rho*x{-1} %{ this is a valid block comment %} + epsilon;

&
Reference to the steady-state level of a variable

Syntax

&VariableName

$VariableName

&VariableName{K}

$VariableName{K}

Description

Use either a & or $ sign in front of a variable name to create a reference to that variable’s steady-
state level in transition or measurement equations. The two signs, & and $, are interchangeable.
Steady-state references may only be used in nonlinear models.

The steady-state reference can include a time shift (a lag or a lead), K. In that case, the steady-state
value will be adjusted for steady-state growth backward or forward accordingly.

The steady-state reference will be replaced

• with the variable itself at the time the model’s steady state is being calculated, i.e. when
calling the function sstate P146 ;

• with the actually assigned steady-state value at the time the model is being solved, i.e. when
calling the function ‘solve’ P142 ’.

53

Model File Language: <...>

Example

x = rho*x{-1} + (1-rho)*&x + epsilon_x !! x = 1;

’...!!...’
Beginning of aliasing inside descriptions and labels

Syntax in descriptions of variables, shocks, and parameters

’Description !! Alias’ Name

Syntax in equations labels

’Label !! Alias’ Equation;

Description

When used in descriptions of variables, shocks, and parameters, or in equation labels, the double
exclamation mark starts an alias (but the exlamation marks are not included in it). The alias can
be used to specify, for example, a LaTeX code associated with the variable, shock, parameter, or
equation. The aliases can be retrieved from the model code by using the appropriate query in the
function model/get P100 .

Example

!transition_variables

’Output gap !! $\hat y_t$‘ Y_GAP

In the resulting model object, the description of the variables Y_GAP will be

Output gap

while its alias will be

$\hat y_t$.

54

Model File Language: diff

<...>
Regular expression in log variable list

Syntax

!log_variables

<Regexp>, ...

Description

See help on !log_variables P38 .

=#
Mark an equation for exact non-linear simulation

Syntax

LHS =# RHS;

Description

Equations that have the equal sign marked with an # can be simulated in an exact non-linear mode.

Why is it the channels sign, #, that is used to mark the equations for exact non-linear simulations?
Because if you associate your model file extension with the Matlab editor, the channel signs are
displayed red making it easier to spot them.

diff
First difference pseudofunction

55

Model File Language: difflog

Syntax

diff(Expr)

diff(Expr,K)

Description

If the input argument K is not specified, this pseudofunction expands to

((Expr)-(Expr{-1}))

If the input argument K is specified, it expands to

((Expr)-(Expr{K}))

The two derived expressions, Expr{-1} and Expr{K}, are based on Expr, and have all its time
subscripts shifted by –1 or by K periods, respectively.

Example

These two lines

diff(Z)

diff(log(X{1})-log(Y{-1}),-2)

will expand to

((Z)-(Z{-1}))

((log(X{1})-log(Y{-1}))-(log(X{-1})-log(Y{-3})))

difflog
First log-difference pseudofunction

Syntax

difflog(Expr)

difflog(Expr,K)

56

Model File Language: dot

Description

If the input argument K is not specified, this pseudofunction expands to

(log(Expr)-log(Expr{-1}))

If the input argument K is specified, it expands to

(log(Expr)-log(Expr{K}))

The two derived expressions, Expr{-1} and Expr{K}, are based on Expr, and have all its time
subscripts shifted by –1 or by K periods, respectively.

Example

The following two lines of code

difflog(Z)

difflog(X{1}/Y{-1},-2)

will expand to

(log(Z)-log(Z{-1}))

(log(X{1}/Y{-1})-log(X{-1}/Y{-3}))

dot
Gross rate of growth pseudofunction

Syntax

dot(Expr)

dot(Expr,K)

57

Model File Language: min

Description

If the input argument k is not specified, this pseudofunction expands to

((Expr)/(Expr{-1}))

If the input argument k is specified, it expands to

((Expr)/(Expr{k}))

The two derived expressions, Expr{-1} and Expr{k}, are based on Expr, and have all its time
subscripts shifted by –1 or by k periods, respectively.

Example

The following two lines

dot(Z)

dot(X+Y,-2)

will expand to

((Z)/(Z{-1}))

((X+Y)/(X{-2}+Y{-2}))

min
Define loss function for optimal policy

Syntax

min(Disc) Expr;

Syntax for exact non-linear simulations

min#(Disc) Expr;

58

Model File Language: movavg

Description

The loss function must be types as one of the transition equations. The Disc is a parameter or an
expression defining the discount factor (applied to future dates), and the expression Expr defines
the loss fuction. The Disc expression must not contain a comma.

If you use the min#(Disc) syntax, all equations created by differentiating the lagrangian w.r.t. indi-
vidual variables will be earmarked for exact nonlinear simulations provided the respective derivative
is nonzero. This only makes sense if the loss function is other than quadratic, and hence its deriva-
tives are nonlinear.

There are two types of optimal policy that can be calculated: time-consistent discretionary policy,
and time-inconsistent optimal policy with commitment. Use the option ’optimal=’ in the function
model P122 at the time of loading the model file to switch between these two types of policy; the
option can be either ’discretion’ (default) or ’commitment’.

Example

This is a simple model file with a Phillips curve and a quadratic loss function.

!transition_variables

x, pi

!transition_shocks

u

!parameters

alpha, beta, gamma

!transition_equations

min(beta) pi^2 + lambda*x^2;

pi = alpha*pi{-1} + (1-alpha)*pi{1} + gamma*y + u;

movavg
Moving average pseudofunction

Syntax

59

Model File Language: movsum

movavg(Expr)

movavg(Expr,K)

Description

If the second input argument, K, is negative, this function expands to the moving average of the
last K periods (including the current period), i.e.

(((Expr)+(Expr{-1})+ ... +(Expr{-(K-1)})/-K)

where Expr{-N} derives from Expr and has all its time subscripts shifted by -N (if specified).

If the second input argument, K, is positive, this function expands to the moving average of the
next K periods ahead (including the current period), i.e.

(((Expr)+(Expr{1})+ ... +(Expr{K-1})/K)

If the second input argument, K, is not specified, the default value -4 is used (based on the fact
that most of the macroeconomic models are quarterly).

Example

The following three lines

movavg(Z)

movavg(Z,-3)

movavg(X+Y{-1},2)

will expand to

(((Z)+(Z{-1})+(Z{-2})+(Z{-3}))/4)

(((Z)+(Z{-1})+(Z{-2}))/3)

(((X+Y{-1})+(X{1}+Y))/2)

movsum
Moving sum pseudofunction

60

Model File Language: movsum

Syntax

movsum(Expr)

movsum(Expr,K)

Description

If the second input argument, K, is negative, this function expands to the moving sum of the last
K periods (including the current period), i.e.

((Expr)+(Expr{-1})+ ... +(Expr{-(K-1)})

where Expr{-N} derives from Expr and has all its time subscripts shifted by -N (if specified).

If the second input argument, K, is positive, this function expands to the moving sum of the next
K periods ahead (including the current period), i.e.

((Expr)+(Expr{1})+ ... +(Expr{K-1})

If the second input argument, K, is not specified, the default value -4 is used (based on the fact
that most of the macroeconomic models are quarterly).

Example

The following three lines

movsum(Z)

movsum(Z,-3)

movsum(X+Y{-1},2)

will expand to

((Z)+(Z{-1})+(Z{-2})+(Z{-3}))

((Z)+(Z{-1})+(Z{-2}))

((X+Y{-1})+(X{1}+Y))

movsum
Moving product pseudofunction

61

Model File Language: {...}

Syntax

movprod(Expr)

movprod(Expr,K)

Description

If the second input argument, K, is negative, this function expands to the moving product of the
last K periods (including the current period), i.e.

((Expr)*(Expr{-1})* ... *(Expr{-(K-1)})

where Expr{-N} derives from Expr and has all its time subscripts shifted by -N (if specified).

If the second input argument, K, is positive, this function expands to the moving product of the
next K periods ahead (including the current period), i.e.

((Expr)*(Expr{1})* ... *(Expr{K-1})

If the second input argument, K, is not specified, the default value -4 is used (based on the fact
that most of the macroeconomic models are quarterly).

Example

The following three lines

movprod(Z)

movprod(Z,-3)

movprod(X+Y{-1},2)

will expand to

((Z)*(Z{-1})*(Z{-2})*(Z{-3}))

((Z)*(Z{-1})*(Z{-2}))

((X+Y{-1})*(X{1}+Y))

{...}
Lag or lead

62

Model File Language: {...}

Syntax

VariableName{-lag}

VariableName{lead}

VariableName{+lead}

Description

To create a lag or a lead of a variable, use a pair of curly brackets.

Example

!transition_equations

x = rho*x{-1} + epsilon_x;

pi = 1/2*pie{-1} + 1/2*pie{1} + gamma*y + epsilon_pi;

63

Models (model Objects)

5 Models (model Objects)

Model objects are created by loading a model file P22 . Once a model object exists, you can use
model functions and standard Matlab functions to write your own m-files to perform the desired
tasks, such calibrate or estimate the model, find its steady state, solve and simulate it, produce
forecasts, analyse its properties, and so on.

Model methods:

Constructor

• model P122 - Create new model object based on model file.

Getting information about models

• addparam P69 - Add model parameters to a database (struct).
• autocaption P72 - Create captions for graphs of model variables or parameters.
• autoexogenise P73 - Get or set variable/shock pairs for use in autoexogenised simulation
plans.

• comment P78 - Get or set user comments in an IRIS object.
• eig P82 - Eigenvalues of the transition matrix.
• findeqtn P96 - Find equations by the labels.
• findname P97 - Find names of variables, shocks, or parameters by their descriptors.
• get P100 - Query model object properties.
• iscompatible P108 - True if two models can occur together on the LHS and RHS in an
assignment.

• islinear P109 - True for models declared as linear.
• islog P110 - True for log-linearised variables.
• ismissing P111 - True if some initical conditions are missing from input database.
• islocked P109 - Get lock status of dynamic links or sstate update equations.
• isnan P112 - Check for NaNs in model object.
• isname P112 - True for valid names of variables, parameters, or shocks in model object.
• issolved P113 - True if model solution exists.
• isstationary P113 - True if model or specified combination of variables is stationary.
• length P116 - Number of alternative parameterisations.
• omega P126 - Get or set the covariance matrix of shocks.
• sspace P145 - State-space matrices describing the model solution.
• system P154 - System matrices for unsolved model.
• userdata P156 - Get or set user data in an IRIS object.

64

Models (model Objects)

Referencing model objects

• subsasgn P151 - Subscripted assignment for model and systemfit objects.
• subsref P153 - Subscripted reference for model and systemfit objects.

Changing model objects

• alter P70 - Expand or reduce number of alternative parameterisations.
• assign P70 - Assign parameters, steady states, std deviations or cross-correlations.
• export P91 - Save export files to disk.
• horzcat P106 - Combine two compatible model objects in one object with multiple parame-

terisations.
• lock P118 - Lock (disable) dynamic links or sstate update equations temporarily.
• refresh P127 - Refresh dynamic links.
• reset P131 - Reset specific values within model object.
• stdscale P151 - Rescale all std deviations by the same factor.
• set P133 - Change modifiable model object property.
• single P142 - Convert solution matrices to single precision.
• unlock P156 - Unlock (enable) locked dynamic links or sstate update equations.

Steady state

• blazer P74 - Reorder steady-state equations into block-recursive structure.
• chksstate P77 - Check if equations hold for currently assigned steady-state values.
• sstate P146 - Compute steady state or balance-growth path of the model.
• sstatefile P150 - Create a steady-state file based on the model object’s steady-state equa-

tions.

Solution, simulation and forecasting

• chkmissing P76 - Check for missing initial values in simulation database.
• diffsrf P81 - Differentiate shock response functions w.r.t. specified parameters.
• expand P90 - Compute forward expansion of model solution for anticipated shocks.
• jforecast P114 - Forecast with judgmental adjustments (conditional forecasts).
• icrf P106 - Initial-condition response functions.
• lhsmrhs P116 - Evaluate the discrepancy between the LHS and RHS for each model equation
and given data.

• resample P129 - Resample from the model implied distribution.
• reporting P128 - Evaluate reporting equations from within model object.
• shockplot P136 - Short-cut for running and plotting plain shock simulation.

65

Models (model Objects)

• simulate P137 - Simulate model.
• solve P142 - Calculate first-order accurate solution of the model.
• srf P144 - Shock response functions, first-order solution only.

Model data

• data4lhsmrhs P79 - Prepare data array for running lhsmrhs.
• emptydb P82 - Create model-specific database with empty tseries for all variables, shocks and

parameters.
• rollback P132 - Prepare database for a rollback run of Kalman filter.
• shockdb P135 - Create model-specific database with random shocks.
• sstatedb P149 - Create model-specific steady-state or balanced-growth-path database.
• templatedb P155 - Create model-specific template database.
• zerodb P160 - Create model-specific zero-deviation database.

Stochastic properties

• acf P67 - Autocovariance and autocorrelation functions for model variables.
• ifrf P107 - Frequency response function to shocks.
• fevd P91 - Forecast error variance decomposition for model variables.
• ffrf P92 - Filter frequency response function of transition variables to measurement vari-
ables.

• fmse P99 - Forecast mean square error matrices.
• vma P158 - Vector moving average representation of the model.
• xsf P159 - Power spectrum and spectral density of model variables.

Identification, estimation and filtering

• bn P75 - Beveridge-Nelson trends.
• diffloglik P80 - Approximate gradient and hessian of log-likelihood function.
• estimate P83 - Estimate model parameters by optimising selected objective function.
• evalsystempriors P89 - Evaluate minus log of system prior density.
• filter P93 - Kalman smoother and estimator of out-of-likelihood parameters.
• fisher P98 - Approximate Fisher information matrix in frequency domain.
• lognormal P121 - Characteristics of log-normal distributions returned from filter of forecast.
• loglik P118 - Evaluate minus the log-likelihood function in time or frequency domain.
• neighbourhood P124 - Evaluate the local behaviour of the objective function around the

estimated parameter values.
• regress P127 - Centred population regression for selected model variables.
• VAR P157 - Population VAR for selected model variables.

66

Models (model Objects): acf

Getting on-line help on model functions

help model

help model/function_name

acf
Autocovariance and autocorrelation functions for model variables

Syntax

[C,R,List] = acf(M,...)

Input arguments

• M [model] - Solved model object for which the ACF will be computed.

Output arguments

• C [namedmat | numeric] - Auto/cross-covariance matrices.

• R [namedmat | numeric] - Auto/cross-correlation matrices.

• List [cellstr] - List of variables in rows and columns of C and R.

Options

• ’applyTo=’ [cellstr | char | @all] - List of variables to which the ’filter=’ will be applied;
@all means all variables.

• ’contributions=’ [true | false] - If true the contributions of individual shocks to ACFs
will be computed and stored in the 5th dimension of the C and R matrices.

• ’filter=’ [char | empty] - Linear filter that is applied to variables specified by ‘applyto’.

• ’nFreq=’ [numeric | 256] - Number of equally spaced frequencies over which the filter in the
option ’filter=’ is numerically integrated.

• ’order=’ [numeric | 0] - Order up to which ACF will be computed.

67

Models (model Objects): acf

• ’matrixFmt=’ [’namedmat’ | ’plain’] - Return matrices C and R as either namedmat P205

objects (i.e. matrices with named rows and columns) or plain numeric arrays.

• ’select=’ [@all | char | cellstr] - Return ACF for selected variables only; @all means all
variables.

Description

C and R are both N-by-N-by-(P+1)-by-NAlt matrices, where N is the number of measurement and
transition variables (including auxiliary lags and leads in the state space vector), P is the order up
to which the ACF is computed (controlled by the option ’order=’), and NAlt is the number of
alternative parameterisations in the input model object, M.

If ’contributions=’ true, the size of the two matrices is N-by-N-by-(P+1)-by-E-by-NAlt, where
E is the number of all shocks (measurement and transition combined) in the model.

ACF with linear filters

You can use the option ’filter=’ to get the ACF for variables as though they were filtered through
a linear filter. You can specify the filter in both the time domain (such as first-difference filter, or
Hodrick-Prescott) and the frequncy domain (such as a band of certain frequncies or periodicities).
The filter is a text string in which you can use the following references:

• ’L’, the lag operator, which will be replaced with exp(-1i*freq);
• ’per’, the periodicity;
• ’freq’, the frequency.

Example

A first-difference filter (i.e. computes the ACF for the first differences of the respective variables):

[C,R] = acf(m,’filter=’,’1-L’)

Example

The cyclical component of the Hodrick-Prescott filter with the smoothing parameter, lambda, 1,600.
The formula for the filter follows from the classical Wiener-Kolmogorov signal extraction theory,

w(L) =
�

�+ 1
j(1�L)(1�L)j2

68

Models (model Objects): addparam

[C,R] = acf(m,’filter’,’1600/(1600 + 1/abs((1-L)^2)^2)’)

Example

A band-pass filter with user-specified lower and upper bands. The band-pass filters can be defined
either in frequencies or periodicities; the latter is usually more convenient. The following is a filter
which retains periodicities between 4 and 40 periods (this would be between 1 and 10 years in a
quarterly model),

[C,R] = acf(m,’filter’,’per >= 4 & per <= 40’)

addparam
Add model parameters to a database (struct)

Syntax

D = addparam(M,D)

Input arguments

• M [model] - Model object whose parameters will be added to database (struct) D.

• D [struct] - Database to which the model parameters will be added.

Output arguments

• ‘D [struct] - Database with the model parameters added.

Description

If there are database entries in D whose names conincide with the model parameters, they will be
overwritten.

69

Models (model Objects): assign

Example

D = struct();

D = addparam(M,D);

alter
Expand or reduce number of alternative parameterisations

Syntax

M = alter(M,N)

Input arguments

• M [model] - Model object in which the number of paremeterisations will be changed.

• N [numeric] - New number of parameterisations.

Output arguments

• M [model] - Model object with the new number of parameterisations.

Description

Example

assign
Assign parameters, steady states, std deviations or cross-correlations

Syntax

[M,Assigned] = assign(M,P)

[M,Assigned] = assign(M,N)

70

Models (model Objects): assign

[M,Assigned] = assign(M,Name,Value,Name,Value,...)

[M,Assigned] = assign(M,List,Values)

Syntax for fast assign

% Initialise

assign(M,List);

% Fast assign

M = assign(M,Values);

...

M = assign(M,Values);

...

Syntax for assigning only steady-state levels

M = assign(M,’-level’,...)

Syntax for assignin only steady-state growth rates

M = assign(M,’-growth’,...)

Input arguments

• M [model] - Model object.

• P [struct] - Database whose fields refer to parameter names, variable names, std deviations,
or cross-correlations.

• N [model] - Another model object from which all parameteres (including std erros and cross-
correlation coefficients), and steady-states values will be assigned that match the name and
type in M.

• Name [char] - A parameter name, variable name, std deviation, cross-correlation, or a regular
expression that will be matched against model names.

• Value [numeric] - A value (or a vector of values in case of multiple parameterisations) that
will be assigned.

• List [cellstr] - A list of parameter names, variable names, std deviations, or cross-correlations.

• Values [numeric] - A vector of values.

71

Models (model Objects): autocaption

Output arguments

• M [model] - Model object with newly assigned parameters and/or steady states.

• Assigned [cellstr | Inf] - List of actually assigned parameter names, variables names (steady
states), std deviations, and cross-correlations; Inf indicates that all values has been assigned
from another model object.

Description

Calls with Name-Value or List-Value pairs throw an error if some names in the list are not valid
names in the model object. Calls with a database, P, or another model object, N, do not perform
this check.

Example

autocaption
Create captions for graphs of model variables or parameters

Syntax

C = autocaption(M,X,Template,...)

Input arguments

• M [model] - Model object.

• X [cellstr | struct | poster] - A cell array of model names, a struct with model names, or a
poster P189 object.

• Template [char] - Prescription for how to create the caption; see Description for details.

Output arguments

• C [cellstr] - Cell array of captions, with one for each model name (variable, shock, parameter)
found in X, in order of their appearance in X.

72

Models (model Objects): autoexogenise

Options

• ’corr=’ [char | ’Corr $shock1$ X $shock2$’] - Template to create $descript$ and $alias$

for correlation coefficients based on $descript$ and $alias$ of the underlying shocks.

• ’std=’ [char | ’Std $shock$’] - Template to create $descript$ and $alias$ for std deviation
based on $descript$ and $alias$ of the underlying shock.

Description

The function autocaption can be used to supply user-created captions to title graphs in grfun/plotpp,
grfun/plotneigh, model/shockplot, and dbase/dbplot, through their option ’caption=’.

The Template can contain the following substitution strings:

• $name$ – will be replaced with the name of the respective variable, shock, or parameter;

• $descript$ – will be replaced with the description of the respective variable, shock, or pa-
rameter;

• $alias$ – will be replaced with the alias of the respective variable, shock, or parameter.

The options ’corr=’ and ’std=’ will be used to create $descript$ and ‘alias for std deviations
and cross-correlations of shocks (which cannot be created in the model code). The options are
expected to use the following substitution strings:

• ’$shock$’ – will be replaced with the description or alias of the underlying shock in a std
deviation;

• ’$shock1$’ – will be replaced with the description or alias of the first underlying shock in a
cross correlation;

• ’$shock2$’ – will be replaced with the description or alias of the second underlying shock in
a cross correlation.

Example

autoexogenise
Get or set variable/shock pairs for use in autoexogenised simulation plans

73

Models (model Objects): blazer

Syntax fo getting autoexogenised variable/shock pairs

A = autoexogenise(M)

Syntax fo setting autoexogenised variable/shock pairs

M = autoexogenise(M,A)

Input arguments

• M [model] - Model object.

• A [struct | empty] - Database with each field representing a variable/shock pair, A.Variable_Name
= ‘Shock_Name’, that can be used in building simulation plans P167 by the plan function
autoexogenise P168 .

Output arguments

• M [model] - Model object with updated definitions of autoexogenised variable/shock pairs.

Description

Whenever you set the autoexogenised variable/shock pairs, the previously assigned pairs are re-
moved, and replaced with the new ones in A. In other words, the new pairs are not added to the
existing ones, the replace them.

Example

blazer
Reorder steady-state equations into block-recursive structure

Syntax

[NameBlk,EqtnBlk] = blazer(M,...)

74

Models (model Objects): bn

Input arguments

• M [model] - Model object.

Output arguments

• M [model] - Model object with variables and steady-state equations regrouped to create
block-recursive structure.

• NameBlk [cell] - Cell of cellstr with variable names in each block.

• EqtnBlk [cell] - Cell of cellstr with equations in each block.

Description

The reordering algorithm first identifies equations with a single variable in each, and variables
occurring in a single equation each, and then uses a combination of column and row approximate
minimum degree permutations (colamd) followed by a Dulmage-Mendelsohn permutation (dmperm).

The output arguments NameBlk and EqtnBlk are 1-by-N cell arrays, where N is the number of
blocks, and each cell is a 1-by-Kn cell array of strings, where Kn is the number of variables and
equations in block N.

Example

bn
Beveridge-Nelson trends

Syntax

Outp = bn(M,Inp,Range,...)

Input arguments

• M [model] - Solved model object.

• Inp [struct | cell] - Input data on which the BN trends will be computed.

• Range [numeric | char] - Date range on which the BN trends will be computed.

75

Models (model Objects): chkmissing

Output arguments

• Outp [struct | cell] - Output data with the BN trends.

Options

• ’deviations=’ [true | false] - Input and output data are deviations from balanced-growth
paths.

• ’dtrends=’ [@auto | true | false] - Measurement variables in input and output data include
deterministic trends specified in !dtrends P27 equations.

Description

The BN decomposition is accurate only if the input data have been generated using unanticipated
shocks.

Example

chkmissing
Check for missing initial values in simulation database

Syntax

[Ok,Miss] = chkmissing(M,D,Start)

Input arguments

• M [model] - Model object.

• D [struct] - Input database for the simulation.

• Start [numeric] - Start date for the simulation.

76

Models (model Objects): chksstate

Output arguments

• Ok [true | false] - True if the input database D contains all required initial values for
simulating model M from date Start.

• Miss [cellstr] - List of missing initial values.

Options

• ’error=’ [true | false] - Throw an error if one or more initial values are missing.

Description

This function does not perform any simulation; it only checks for missing initial values in an input
database.

Example

chksstate
Check if equations hold for currently assigned steady-state values

Syntax

[Flag,List] = chksstate(M,...)

[Flag,Discr,List] = chksstate(M,...)

Input arguments

• M [model] - Model object.

Output arguments

• Flag [true | false] - True if discrepancy between LHS and RHS is smaller than ’tolerance=’

in each equation.

• Discr [numeric] - Discrepancies between LHS and RHS evaluated for each equation at two
consecutive times, and returned as two column vectors.

77

Models (model Objects): comment

• List [cellstr] - List of equations in which the discrepancy between LHS and RHS is greater
than ’tolerance=’.

Options

• ’error=’ [true | false] - Throw an error if one or more equations fail to hold up to tolerance
level.

• ’eqtn=’ [’full’ | ’sstate’] - Evaluate either full or steady-state equations on steady-state
values.

• ’tolerance=’ [numeric | getrealsmall()] - Tolerance level.

• ’warning=’ [true | false] - Display warnings produced by this function.

Description

Example

comment
Get or set user comments in an IRIS object

Syntax for getting user comments

Cmt = comment(Obj)

Syntax for assigning user comments

Obj = comment(Obj,Cmt)

Input arguments

• Obj [model | tseries | VAR | SVAR | FAVAR | sstate] - One of the IRIS objects.

• Cmt [char] - User comment that will be attached to the object.

78

Models (model Objects): data4lhsmrhs

Output arguments

• Cmt [char] - User comment that are currently attached to the object.

Description

Example

/bin/bash: lhsmrhs: command not found

data4lhsmrhs
Prepare data array for running

Syntax

[YXE,List,XRange] = data4lhsmrhs(M,Inp,Range)

Input arguments

• M [model] - Model object whose equations will be later evaluated by calling lhsmrhs P116 .

• Inp [struct] - Input database with observations on measurement variables, transition vari-
ables, and shocks on which lhsmrhs P116 will be evaluated.

• Range [numeric | char] - Date range on which lhsmrhs P116 will be evaluated.

Output arguments

• YXE [numeric] - Numeric array with the observations on measurement variables, transition
variables, and shocks organised row-wise.

• List [cellstr] - List of measurement variables, transition variables and shocks in order of
their appearance in the rows of YXE.

• XRange [numeric] - Extended range including pre-sample and post-sample observations
needed to evaluate lags and leads of transition variables.

79

Models (model Objects): diffloglik

Description

The resulting array, YXE, is nVar by nXPer by nData, where nVar is the total number of measurement
variables, transition variables, and shocks, nXPer is the number of periods including the pre-sample
and post-sample periods needed to evaluate lags and leads, and nData is the number of alternative
data sets (i.e. the number of columns in each input time series) in the input database, Inp.

Example

YXE = data4lhsmrhs(M,d,range);

D = lhsmrhs(M,YXE);

diffloglik
Approximate gradient and hessian of log-likelihood function

Syntax

[MinusLogLik,Grad,Hess,V] = diffloglik(M,Inp,Range,PList,...)

Input arguments

• M [model] - Model object whose likelihood function will be differentiated.

• Inp [cell | struct] - Input data from which measurement variables will be taken.

• Range [numeric | char] - Date range on which the likelihood function will be evaluated.

• PList [cellstr] - List of model parameters with respect to which the likelihood function will
be differentiated.

Output arguments

• MinusLogLik [numeric] - Value of minus the likelihood function at the input data.

• Grad [numeric] - Gradient (or score) vector.

• Hess [numeric] - Hessian (or information) matrix.

• V [numeric] - Estimated variance scale factor if the ’relative=’ options is true; otherwise v

is 1.

80

Models (model Objects): diffsrf

Options

• ’chkSstate=’ [true | false | cell] - Check steady state in each iteration; works only in
non-linear models.

• ’solve=’ [true | false | cellstr] - Re-compute solution for each parameter change; you can
specify a cell array with options for the solve function.

• ’sstate=’ [true | false | cell] - Re-compute steady state in each differentiation step; if the
model is non-linear, you can pass in a cell array with options used in the sstate function.

See help on model/filter P93 for other options available.

Description

Example

diffsrf
Differentiate shock response functions w.r.t. specified parameters

Syntax

S = diffsrf(M,Range,PList,...)

S = diffsrf(M,NPer,PList,...)

Input arguments

• M [model] - Model object whose response functions will be simulated and differentiated.

• Range [numeric | char] - Simulation date range with the first date being the shock date.

• NPer [numeric] - Number of simulation periods.

• PList [char | cellstr] - List of parameters w.r.t. which the shock response functions will be
differentiated.

Output arguments

• S [struct] - Database with shock reponse derivatives stowed in multivariate time series.

81

Models (model Objects): emptydb

Options

See model/srf P144 for options available.

Description

Example

eig
Eigenvalues of the transition matrix

Syntax

e = eig(m)

Input arguments

• m [model] - Model object whose eigenvalues will be returned.

Output arguments

• e [numeric] - Array of all eigenvalues associated with the model, i.e. all stable, unit, and
unstable roots are included.

Description

Example

emptydb
Create model-specific database with empty tseries for all variables, shocks and
parameters

82

Models (model Objects): estimate

Syntax

D = emptydb(M)

Input arguments

• M [model] - Model for which the empty database will be created.

Output arguments

• D [struct] - Database with an empty tseries object for each variable and each shock, and a
vector of currently assigned values for each parameter.

Description

Example

estimate
Estimate model parameters by optimising selected objective function

Syntax

Input arguments marked with a ~ (tilde) sign may be omitted.

[PEst,Pos,Cov,Hess,M,V,Delta,PDelta] = estimate(M,D,Range,Est,~Spr,...)

Input arguments

• M [model] - Model object with single parameterization.

• D [struct | cell] - Input database or datapack from which the measurement variables will be
taken.

• Range [struct | char] - Date range on which the data likelihood will be evaluated.

• Est [struct] - Database with the list of paremeters that will be estimated, and the parameter
prior specifications (see below).

• ~SPr [systempriors | empty] - System priors object, systempriors P184 ; may be omitted.

83

Models (model Objects): estimate

Output arguments

• PEst [struct] - Database with point estimates of requested parameters.

• Pos [poster] - Posterior, poster P189 , object; this object also gives you access to the
value of the objective function at optimum or at any point in the parameter space, see the
poster/eval P192 function.

• Cov [numeric] - Approximate covariance matrix for the estimates of parameters with slack
bounds based on the asymptotic Fisher information matrix (not on the Hessian returned from
the optimization routine).

• Hess [cell] - Hess{1} is the total hessian of the objective function; Hess{2} is the contributions
of the priors to the hessian.

• M [model] - Model object solved with the estimated parameters (including out-of-likelihood
parameters and common variance factor).

The remaining three output arguments, V, Delta, PDelta, are the same as the model/loglik P118

output arguments of the same names.

Options

• ’chkSstate=’ [true | false | cell] - Check steady state in each iteration; works only in
non-linear models.

• ’evalFrfPriors=’ [true | false] - In each iteration, evaluate frequency response function
prior density, and include it to the overall objective function to be optimised.

• ’evalLik=’ [true | false] - In each iteration, evaluate likelihood (or another data based
criterion), and include it to the overall objective function to be optimised.

• ’evalPPriors=’ [true | false] - In each iteration, evaluate parameter prior density, and
include it to the overall objective function to be optimised.

• ’evalSPriors=’ [true | false] - In each iteration, evaluate system prior density, and include
it to the overall objective function to be optimised.

• ’filter=’ [cell | empty] - Cell array of options that will be passed on to the Kalman
filter including the type of objective function; see help on model/filter P93 for the options
available.

• ’initVal=’ [model | struct | struct] - If struct use the values in the input struct Est to
start the iteration; if model use the currently assigned parameter values in the input model,
M.

84

Models (model Objects): estimate

• ’maxIter=’ [numeric | 500] - Maximum number of iterations allowed.

• ’maxFunEvals=’ [numeric | 2000] - Maximum number of objective function calls allowed.

• ’noSolution=’ [’error’ | ’penalty’ | numeric] - Specifies what happens if solution or
steady state fails to solve in an iteration: ’error=’ stops the execution with an error message,
’penalty=’ returns an extreme value, 1e10, back into the minimization routine; or a user-
supplied penalty can be specified as a numeric scalar greater than 1e10.

• ’optimSet=’ [cell | empty] - Cell array used to create the Optimization Toolbox options
structure; works only with the option ’optimiser=’ ’default’.

• ’solve=’ [true | false | cellstr] - Re-compute solution in each iteration; you can specify a
cell array with options for the solve function.

• ’optimiser=’ [’default’ | ’pso’ | cell | function_handle] - Minimiz ation procedure.

– ’default’: The Optimization Toolbox function fminunc or fmincon will be called de-
pending on the presence or absence of lower and/or upper bounds.

– ’pso’: The Particle Swarm Optimizer will be called; use the option ’pso=’ to specify
further options to control the optimizer (see Options for Particle Swarm Optimizer
below).

– function_handle or cell: Enter a function handle to your own optimization procedure,
or a cell array with a function handle and additional input arguments (see below).

• ’sstate=’ [true | false | cell | function_handle] - Re-compute steady state in each iteration;
you can specify a cell array with options for the sstate function, or a function handle whose
behaviour is described below.

• ’tolFun=’ [numeric | 1e-6] - Termination tolerance on the objective function.

• ’tolX=’ [numeric | 1e-6] - Termination tolerance on the estimated parameters.

Options for Particle Swarm Optimizer

The following options can be specified through the main option ’optimset=’ when ’optimiser=pso’.

• ’cognitiveAttraction=’ [numeric | 0.5] - Scalar between 0 and 1 to control the relative
attraction to the best location a particle can remember.

• ’constrBoundary=’ [absorb | reflect | soft] - Controls the way imposed constraints are
handled when violated.

– ’soft’: Particles are allowed to travel outside the bounds but get bad fitness function
(likelihood) values when they do;

85

Models (model Objects): estimate

– ’reflect’: Particle velocity is changed such that when the particle encounters the bound
its velocity is changed to effectively make it bounce off of the boundary;

– ’absorb’: Particles hit the bound and stay at the bound until attracted elsewhere
because its velocity is set to zero.

• ’display=’ [’off’ | ’final’ | ’iter’] - Level of display in order of increasing verbosity;
’iter’ will only produce output at most ’updateInterval=’ seconds.

• ’fitnessLimit=’ [numeric | -Inf] - Algorithm will terminate when a function value this low
is encountered.

• ’generations=’ [numeric | 1000] - Positive integer describing the maximum length of swarm
evolution.

• ’hybridFcn=’ [true | false | ’fmincon’ | ’fminunc’ | cell] - Run a second stage optimization
after PSO (only available with the Optimization Tbx installed):

– false: No second stage optimization, run the particle swarm only.

– true: After PSO, run either fminunc or fmincon, the Optimization Toolbox routines,
depending on the presence or absence of lower and upper bounds on estimated parame-
ters.

– ’fminunc’, ’fmincon’: After PSO, run the specified Optimization Toolbox routine.

– cell: A cell array in which the first argument specifies the function as previously and
the second argument contains the options structure for that function; for instance
{@fmincon,optimset(’Display’,’iter’)}.

• ’includeInitialValue=’ [true | false] - Include the initial vector of parameters in the
initial population.

• ’initialPopulation=’ [numeric | empty] - An NPar-by-NPop array containing the initial
distribution of particles, where NPar is the number of estimated parameters, and NPop is the
size of population. If empty, a population will be created containing the initial parameter
vector and the rest of the particles will be randomly generated according to ’popInitRange=’.
Use the option ’includeInitialValue=’ false oo exclude the initial value from the initial
population so that the entire population is randomly generated.

• ’socialAttraction=’ [numeric | 1.25] - Positive scalar to control the relative attraction of
each particle to the best location they have heard about from other particles.

• ’plotFcns=’ [cell | empty] - Cell array of function handles to functions which accept
(options,state,flag) values as input arguments. The only built-in general-purpose plotting
function is @irisoptim.scoreDiversity.

• ’populationSize=’ [numeric | 40] - Positive integer which determines the number of particles
in the swarm.

86

Models (model Objects): estimate

• ’popInitRange=’ [numeric | empty] - A 2-by-NPar array which sets the range over which
the initial population will be distributed, where NPar is the number of estimated parameters,
or a 2-by-1 array with the range for all parameters. If empty and ’PopInitRange=’ is not
set, the upper and lower bounds will be used if both are finite. If either of the bounds are
infinite, the range will be [0;1].

• ’stallGenLimit=’ [numeric | 100] - Maximum number of swarm iterations which result in
no improvement in the fitness function (likelihood) value before the algorithm terminates.

• ’timeLimit=’ [numeric | Inf] - Maximum running time in seconds.

• ’tolCon=’ [numeric | 1e-6] - Largest tolerated constraint violation.

• ’tolFun=’ [numeric | 1e-6] - Function tolerance; when the change in the best fitness func-
tion value (likelihood) improvement per generation falls below this value the algorithm will
terminate.

• ’velocityLimit=’ [numeric | Inf] - Positive scalar to bound particle intertia from above.

• ’updateInterval=’* [numeric | 5] - Minimum length of time in seconds which must pass
before new command window output will be produced.

• ’useParallel=’ [true | false] - Use a parfor loop which requires you already have a
matlabpool open. Overhead is slightly higher for constrained problems than unconstrained
problems.

Description

The parameters that are to be estimated are specified in the input parameter estimation database,
E in which you can provide the following specifications for each parameter:

E.parameter_name = { start, lower, upper, logpriorFunc };

where start is the value from which the numerical optimization will start, lower is the lower bound,
upper is the upper bound, and logpriorFunc is a function handle expected to return the log of the
prior density. You can use the logdist P197 package to create function handles for some of the
basic prior distributions.

You can use NaN for start if you wish to use the value currently assigned in the model object. You
can use -Inf and Inf for the bounds, or leave the bounds empty or not specify them at all. You
can leave the prior distribution empty or not specify it at all.

87

Models (model Objects): estimate

Estimating nonlinear models

By default, only the first-order solution, but not the steady state is updated (recomputed) in each
iteration before the likelihood is evaluated. This behavior is controled by two options, ’solve=’
(true by default) and ’sstate=’ (false by default). If some of the estimated parameters do affect
the steady state of the model, the option ’sstate=’ needs to be set to true or to a cell array
with steady-state options, as in the function sstate P146 , otherwise the results will be groslly
inaccurate or a valid first-order solution will be impossible to find.

When steady state is recomputed in each iteration, you may also want to use the option ’chksstate=’

to require that a steady-state check for all model equations be performed.

User-supplied optimization (minimization) routine

You can supply a function handle to your own minimization routine through the option ’optimiser=’.
This routine will be used instead of the Optim Tbx’s fminunc or fmincon functions. The user-
supplied function is expected to take at least five input arguments and return three output argu-
ments:

[PEst,ObjEst,Hess] = yourminfunc(F,P0,PLow,PHigh,OptimSet)

with the following input arguments:

• F is a function handle to the function minimised;
• P0 is a 1-by-N vector of initial parameter values;
• PLow is a 1-by-N vector of lower bounds (with -Inf indicating no lower bound);
• PHigh is a 1-by-N vector of upper bounds (with Inf indicating no upper bounds);
• OptimSet is a cell array with name-value pairs entered by the user through the option
’optimSet=’. This option can be used to modify various settings related to the optimization
routine, such as tolerance, number of iterations, etc. Of course, you may simply ignore it and
leave this input argument unused;

and the following output arguments:

• PEst is a 1-by-N vector of estimated parameters;
• ObjEst is the value of the objective function at optimum;
• Hess is a N-by-N approximate Hessian matrix at optimum.

If you need to use extra input arguments in your minimization function, enter a cell array instead
of a plain function handle:

{@yourminfunc,Arg1,Arg2,...}

88

Models (model Objects): evalsystempriors

In that case, the optimiser will be called the following way:

[PEst,ObjEst,Hess] = yourminfunc(F,P0,PLow,PHigh,Opt,Arg1,Arg2,...)

User-supplied steady-state solver

You can supply a function handle to your own steady-state solver (i.e. a function that finds the
steady state for given parameters) through the ’sstate=’ option.

The function is expected to take one input argument, the model object with newly assigned pa-
rameters, and return at least two output arguments, the model object with a new steady state (or
balanced-growth path) and a success flag. The flag is true if the steady state has been successfully
computed, and false if not:

[M,Success] = mysstatesolver(M)

It is your responsibility to add the growth characteristics if some of the model variables drift over
time. In other words, you need to take care of the imaginary parts of the steady state values in the
model object returned by the solver.

Alternatively, you can also run the steady-state solver with extra input arguments (with the model
object still being the first input argument). In that case, you need to set the option ’sstate=’ to a
cell array with the function handle in the first cell, and the other input arguments afterwards, e.g.

’sstate=’,{@mysstatesolver,1,’a’,X}

The actual function call will have the following form:

[M,Success] = mysstatesolver(M,1,’a’,X)

Example

evalsystempriors
Evaluate minus log of system prior density

Syntax

[P,C,X] = evalsystempriors(M,S)

89

Models (model Objects): expand

Input arguments

• M [model] - Model object on which current parameterisation the system priors will be
evaluated.

• S [systempriors] - System priors objects.

Output arguments

• P [numeric] - Minus log of system prior density.

• C [numeric] - Contributions of individual prios to the overall system prior density.

• X [numeric] - Value of each expression defining a system property for which a prior has been
defined in the system priors object, S.

Description

Example

expand
Compute forward expansion of model solution for anticipated shocks

Syntax

M = expand(M,K)

Input arguments

• M [model] - Model object whose solution will be expanded.

• K [numeric] - Number of periods ahead, t+k, up to which the solution for anticipated shocks
will be expanded.

Output arguments

• M [model] - Model object with the solution expanded.

90

Models (model Objects): fevd

Description

Example

export
Save export files to disk

Backend IRIS function. No help provided.

fevd
Forecast error variance decomposition for model variables

Syntax

[X,Y,List,A,B] = fevd(M,Range,...)

[X,Y,List,A,B] = fevd(M,NPer,...)

Input arguments

• M [model] - Model object for which the decomposition will be computed.

• Range [numeric | char] - Decomposition date range with the first date beign the first forecast
period.

• NPer [numeric] - Number of periods for which the decomposition will be computed.

Output arguments

• X [namedmat | numeric] - Array with the absolute contributions of individual shocks to total
variance of each variables.

• Y [namedmat | numeric] - Array with the relative contributions of individual shocks to total
variance of each variables.

• List [cellstr] - List of variables in rows of the X an Y arrays, and shocks in columns of the X

and Y arrays.

91

Models (model Objects): ffrf

• A [struct] - Database with the absolute contributions converted to time series.

• B [struct] - Database with the relative contributions converted to time series.

Options

• ’matrixFmt=’ [’namedmat’ | ’plain’] - Return matrices X and Y as be either namedmat P205

objects (i.e. matrices with named rows and columns) or plain numeric arrays.

• ’select=’ [@all | char | cellstr] - Return FEVD for selected variables and/or shocks only;
@all means all variables and shocks; this option does not apply to the output databases, A
and B.

Description

Example

ffrf
Filter frequency response function of transition variables to measurement variables

Syntax

[F,List] = ffrf(M,Freq,...)

Input arguments

• M [model] - Model object for which the frequency response function will be computed.

• Freq [numeric] - Vector of frequencies for which the response function will be computed.

Output arguments

• F [namedmat | numeric] - Array with frequency responses of transition variables (in rows)
to measurement variables (in columns).

• List [cell] - List of transition variables in rows of the F matrix, and list of measurement
variables in columns of the F matrix.

92

Models (model Objects): filter

Options

• ’include=’ [char | cellstr | @all] - Include the effect of the listed measurement variables
only; @all means all measurement variables.

• ’exclude=’ [char | cellstr | empty] - Remove the effect of the listed measurement variables.

• ’maxIter=’ [numeric | 500] - Maximum number of iteration when computing the steady-state
Kalman filter.

• ’matrixFmt=’ [’namedmat’ | ’plain’] - Return matrix F as either a namedmat P205 object
(i.e. matrix with named rows and columns) or a plain numeric array.

• ’select=’ [@all | char | cellstr] - Return FFRF for selected variables only; @all means all
variables.

• ’tolerance=’ [numeric | 1e-7] - Convergence tolerance when computing the steady-state
Kalman filter.

Description

Example

filter
Kalman smoother and estimator of out-of-likelihood parameters

Syntax

Input arguments marked with a ~ (tilde) sign may be omitted.

[M,Outp,V,Delta,PE,SCov] = filter(M,Inp,Range,~J,...)

Input arguments

• M [model] - Solved model object.

• Inp [struct | cell] - Input database from which observations for measurement variables will
be taken.

• Range [numeric | char] - Date range on which the Kalman filter will be run.

93

Models (model Objects): filter

• ~J [struct | empty] - Database with user-supplied time-varying paths for std deviation, corr
coefficients, or medians for shocks; ~J is equivalent to using the option ’vary=’, and may be
omitted.

Output arguments

• M [model] - Model object with updates of std devs (if ’relative=’ is true) and/or updates
of out-of-likelihood parameters (if ’outoflik=’ is non-empty).

• Outp [struct | cell] - Output struct with smoother or prediction data.

• V [numeric] - Estimated variance scale factor if the ’relative=’ options is true; otherwise V

is 1.

• Delta [struct] - Database with estimates of out-of-likelihood parameters.

• PE [struct] - Database with prediction errors for measurement variables.

• SCov [numeric] - Sample covariance matrix of smoothed shocks; the covariance matrix is
computed using shock estimates in periods that are included in the option ’objrange=’ and,
at the same time, contain at least one observation of measurement variables.

Options

• ’ahead=’ [numeric | 1] - Predictions will be computed this number of period ahead.

• ’chkFmse=’ [true | false] - Check the condition number of the forecast MSE matrix in each
step of the Kalman filter, and return immediately if the matrix is ill-conditioned; see also the
option ’fmseCondTol=’.

• ’condition=’ [char | cellstr | empty] - List of conditioning measurement variables. Condition
time t|t-1 prediction errors (that enter the likelihood function) on time t observations of these
measurement variables.

• ’deviation=’ [true | false] - Treat input and output data as deviations from balanced-
growth path.

• ’dtrends=’ [@auto | true | false] - Measurement data contain deterministic trends.

• ’data=’ [’predict’ | ’smooth’ | ’predict,smooth’] - Return smoother data or prediction
data or both.

• ’fmseCondTol=’ [eps() | numeric] - Tolerance for the FMSE condition number test; not
used unless ’chkFmse=’ true.

94

Models (model Objects): filter

• ’initCond=’ [’fixed’ | ’optimal’ | ’stochastic’ | struct] - Method or data to initialise
the Kalman filter; user-supplied initial condition must be a mean database or a mean-MSE
struct.

• ’lastSmooth=’ [numeric | Inf] - Last date up to which to smooth data backward from the
end of the range; if Inf smoother will run on the entire range.

• ’meanOnly=’ [true | false] - Return a plain database with mean data only; this option
overrides the ’return*=’ options, i.e. ’returnCont=’, ’returnMse=’, ’returnStd=’.

• ’outOfLik=’ [cellstr | empty] - List of parameters in deterministic trends that will be
estimated by concentrating them out of the likelihood function.

• ’objFunc=’ [’-loglik’ | ’prederr’] - Objective function computed; can be either minus
the log likelihood function or weighted sum of prediction errors.

• ’objRange=’ [numeric | Inf] - The objective function will be computed on the specified
range only; Inf means the entire filter range.

• ’precision=’ [’double’ | ’single’] - Numeric precision to which output data will be stored;
all calculations themselves always run to double precision.

• ’relative=’ [true | false] - Std devs of shocks assigned in the model object will be treated
as relative std devs, and a common variance scale factor will be estimated.

• ’returnCont=’ [true | false] - Return contributions of prediction errors in measurement
variables to the estimates of all variables and shocks.

• ’returnMse=’ [true | false] - Return MSE matrices for predetermined state variables; these
can be used for settin up initial condition in subsequent call to another filter or jforecast.

• ’returnStd=’ [true | false] - Return database with std devs of model variables.

• ’weighting=’ [numeric | empty] - Weighting vector or matrix for prediction errors when
’objective=’ ’prederr’; empty means prediction errors are weighted equally.

Options for models with nonlinear equations simulated in prediction step

• ’simulate=’ [false | cell] - Use the function simulate P137 to set up nonlinear simulation
for each prediction step; specify options that will be passed into simulate when running a
prediction step.

Description

The ’ahead=’ and ’rollback=’ options cannot be combined with one another, or with multiple
data sets, or with multiple parameterisations.

95

Models (model Objects): findeqtn

Initial conditions in time domain

By default (with ’initCond=’ ’stochastic’), the Kalman filter starts from the model-implied
asymptotic distribution. You can change this behaviour by setting the option ’initCond=’ to one
of the following four different values:

• ’fixed’ – the filter starts from the model-implied asymptotic mean (steady state) but with
no initial uncertainty. The initial condition is treated as a vector of fixed, non-stochastic,
numbers.

• ’optimal’ – the filter starts from a vector of fixed numbers that is estimated optimally
(likelihood maximising).

• database (i.e. struct with fields for individual model variables) – a database through which
you supply the mean for all the required initial conditions, see help on model/get P100 for
how to view the list of required initial conditions.

• mean-mse struct (i.e. struct with fields .mean and .mse) – a struct through which you supply
the mean and MSE for all the required initial conditions.

Contributions of measurement variables to the estimates of all variables

Use the option ’returnCont=’ true to request the decomposition of measurement variables, tran-
sition variables, and shocks into the contributions of each individual measurement variable. The
resulting output database will include one extra subdatabase called .cont. In the .cont sub-
database, each time series will have Ny columns where Ny is the number of measurement variables
in the model. The k-th column will be the contribution of the observations on the k-th measurement
variable.

The contributions are additive for linearised variables, and multiplicative for log-linearised variables
(log variables). The difference between the actual path for a particular variable and the sum of the
contributions (or their product in the case of log varibles) is due to the effect of constant terms and
deterministic trends.

Example

findeqtn
Find equations by the labels

96

Models (model Objects): findname

Syntax

[Eqtn,Eqtn,...] = findeqtn(M,Label,Label,...)

[List,List,...] = findeqtn(M,’-rexp’,Rexp,Rexp,...)

Input arguments

• M [model] - Model object in which the equations will be searched for.

• Label [char] - Equation label that will be searched for.

• Rexp [char] - Regular expressions that will be matched against equation labels.

Output arguments

• Eqtn [char] - First equation found with the label Label.

• List [cellstr] - List of equations whose labels match the regular expression Rexp.

Description

Example

findname
Find names of variables, shocks, or parameters by their descriptors

Syntax

[Name,Name,...] = findname(M,Desc,Desc,...)

[List,List,...] = findname(M,’-rexp’,Rexp,Rexp,...)

Input arguments

• M [model] - Model object in which the names will be searched for.

• Desc [char] - Variable, shock, or parameter descriptors that will be searched for.

• Rexp [char] - Regular expressions that will be matched against variable, shock, and parameter
descriptors.

97

Models (model Objects): fisher

Output arguments

• Name [char] - First name found with the descriptor Desc.

• List [cellstr] - List of names whose descriptors match the regular expression Rexp.

Description

Example

fisher
Approximate Fisher information matrix in frequency domain

Syntax

[F,FF,Delta,Freq] = fisher(M,NPer,PList,...)

Input arguments

• M [model] - Solved model object.

• NPer [numeric] - Length of the hypothetical range for which the Fisher information will be
computed.

• PList [cellstr] - List of parameters with respect to which the likelihood function will be
differentiated.

Output arguments

• F [numeric] - Approximation of the Fisher information matrix.

• FF [numeric] - Contributions of individual frequencies to the total Fisher information matrix.

• Delta [numeric] - Kronecker delta by which the contributions in Fi need to be multiplied
to sum up to F.

• Freq [numeric] - Vector of frequencies at which the Fisher information matrix is evaluated.

98

Models (model Objects): fmse

Options

• ’chkSstate=’ [true | false | cell] - Check steady state in each iteration; works only in
non-linear models.

• ’deviation=’ [true | false] - Exclude the steady state effect at zero frequency.

• ’exclude=’ [char | cellstr | empty] - List of measurement variables that will be excluded
from the likelihood function.

• ’percent=’ [true | false] - Report the overall Fisher matrix F as Hessian w.r.t. the log of
variables; the interpretation for this is that the Fisher matrix describes the changes in the
log-likelihood function in reponse to percent, not absolute, changes in parameters.

• ’progress=’ [true | false] - Display progress bar in the command window.

• ’solve=’ [true | false | cellstr] - Re-compute solution in each differentiation step; you can
specify a cell array with options for the solve function.

• ’sstate=’ [true | false | cell] - Re-compute steady state in each differentiation step; if the
model is non-linear, you can pass in a cell array with opt used in the sstate function.

Description

Example

fmse
Forecast mean square error matrices

Syntax

[F,List,D] = fmse(M,NPer,...)

[F,List,D] = fmse(M,Range,...)

Input arguments

• M [model] - Model object for which the forecast MSE matrices will be computed.

• NPer [numeric] - Number of periods.

• Range [numeric | char] - Date range.

99

Models (model Objects): get

Output arguments

• F [namedmat | numeric] - Forecast MSE matrices.

• List [cellstr] - List of variables in rows and columns of M.

• D [dbase] - Database with the std deviations of individual variables, i.e. the square roots of
the diagonal elements of F.

Options

• ’matrixFmt=’ [’namedmat’ | ’plain’] - Return matrix F as either a namedmat P205 object
(i.e. matrix with named rows and columns) or a plain numeric array.

• ’select=’ [@all | char | cellstr] - Return FMSE for selected variables only; @all means all
variables.

Description

Example

get
Query model object properties

Syntax

Ans = get(M,Query)

[Ans,Ans,...] = get(M,Query,Query,...)

Input arguments

• M [model] - Model object.

• Query [char] - Query to the model object.

Output arguments

• Ans [. . .] - Answer to the query.

100

Models (model Objects): get

Valid queries to model objects

This is the categorised list of queries to model objects. Note that letter ’y’ is used in various
contexts to denote measurement variables or equations, ’x’ transition variables or equations, ’e’
shocks, ’p’ parameters, ’g’ exogenous variables, ’d’ deterministic trend equations, and ’l’ dy-
namic links. The property names are case insensitive.

Steady state

• ’sstate’ – Returns [struct] a database with the steady states for all model variables. The
steady states are described by complex numbers in which the real part is the level and the
imaginary part is the growth rate.

• ’sstateLevel’ – Returns [struct] a database with the steady-state levels for all model
variables.

• ’sstateGrowth’ – Returns [struct] a database with steady-state growth (first difference for
linearised variables, gross rate of growth for log-linearised variables) for all model variables.

• ’dtrends’ – Returns [struct] a database with the effect of the deterministic trends on the
measurement variables. The effect is described by complex numbers the same way as the
steady state.

• ’dtrendsLevel’ – Returns [struct] a database with the effect of the deterministic trends on
the steady-state levels of the measurement variables.

• ’dtrendsGrowth’ – Returns [struct] a database with the effect of deterministic trends on
steady-state growth of the measurement variables.

• ’sstate+dtrends’ – Returns [struct] the same as ‘sstate’ except that the measurement
variables are corrected for the effect of the deterministic trends.

• ’sstateLevel+dtrendsLevel’ – Returns [struct] the same as ‘sstateLevel’ except that the
measurement variables are corrected for the effect of the deterministic trends.

• ’sstateGrowth+dtrendsGrowth’ – Returns [struct] the same as ’sstateGrowth’ except that
the measurement variables are corrected for the effect of the deterministic trends.

Variables, shocks, and parameters

• ’yList’, ’xList’, ’eList’, ’pList’, ’gList’ - Return [cellstr] the lists of, respectively,
measurement variables (y), transition variables (x), shocks (e), parameters (p), and exogenous
variables (g), each in order of appearance of the names in declaration sections of the original
model file. Note that the list of parameters, ’pList’, does not include the names of std
deviations or cross-correlations.

101

Models (model Objects): get

• ’eyList’ – Returns [cellstr] the list of measurement shocks in order of their appearance in the
model code declarations; only those shocks that actually occur in at least one measurement
equation are returned.

• ’exList’ – Returns [cellstr] the list of transition shocks in order of their appearance in
the model code declarations; only those shocks that actually occur in at least one transition
equation are returned.

• ’stdList’ – Returns [cellstr] the list of the names of the standard deviations for the shocks
in order of the appearance of the corresponding shocks in the model code.

• ’corrList’ – Returns [cellstr] the list of the names of cross-correlation coefficients for the
shocks in order of the appearance of the corresponding shocks in the model code.

• ’stdCorrList’ – Returns [cellstr] the list of the names of std deviations and cross-correlation
coefficients for the shocks in order of the appearance of the corresponding shocks in the model
code.

Equations

• ’yEqtn’, ’xEqtn’, ’dEqtn’, ’lEqtn’ - Return [cellstr] the lists of, respectively, to measure-
ment equations (y), transition equations (x), deterministic trends (d), and dynamic links (l),
each in order of appearance in the original model file.

• ’links’ – Returns [struct] a database with the dynamic links with fields names after the
LHS name.

• ’rpteq’ – Returns [rpteq] a reporting equations (rpteq) object (if !reporting_equations

were included in the model file).

First-order Taylor expansion of equations

• ’derivatives’ – Returns [cellstr] the symbolic/automatic derivatives for each model equa-
tion; in each equation, the derivatives w.r.t. all variables present in that equation are evaluated
at once and returned as a vector of numbers; see also ’wrt’.

• ’wrt’ - Returns [cellstr] the list of the variables (and their auxiliary lags or leads) with
respect to which the corresponding equation in ’derivatives’ is differentiated.

Descriptions and aliases of variables, parameters, and shocks

• ’descript’ – Returns [struct] a database with user descriptions of model variables, shocks,
and parameters.

• ’yDescript’, ’xDescript’, ’eDescript’, ’pDescript’, ’gDescript’ - Return [cellstr] user
descriptions of, respectively, measurement variables (y), transition variables (x), shocks (e),
parameters (p), and exogenous variables (g).

102

Models (model Objects): get

• ’alias’ – Returns [struct] a database with all aliases of model variables, shocks, and
parameters.

• ’yAlias’, ’xAlias’, ’eAlias’, ’pAlias’, ’gAlias’ - Return [cellstr] the aliases of, respec-
tively, measurement variables (y), transition variables (x), shocks (e), parameters (p), and
exogenous variables (g).

Equation labels and aliases

• ’labels’ – Returns [cellstr] the list of all user labels added to equations.

• ’yLabels’, ’xLabels’, ’dLabels’, ’lLabels’, ’rLabels’ - Return [cellstr] user labels added,
respectively, to measurement equations (y), transition equations (x), deterministic trends (d),
and dynamic links (l).

• ’eqtnAlias’ – Returns [cellstr] the list of all aliases added to equations.

• ’yEqtnAlias’, ’xEqtnAlias’, ’dEqtnAlias’, ’lEqtnAlias’, ’rEqtnAlias’ - Return [cellstr]
the aliases of, respectively, measurement equations (y), transition equations (x), deterministic
trends (d), and dynamic links (l).

Parameter values

• ’corr’ – Returns [struct] a database with current cross-correlation coefficients of shocks.

• ’nonzeroCorr’ – Returns [struct] a database with current nonzero cross-correlation coeffi-
cients of shocks.

• ’parameters’ – Returns [struct] a database with current parameter values, including the
std devs and non-zero corr coefficients.

• ’std’ – Returns [struct] a database with current std deviations of shocks.

Eigenvalues

• ’stableRoots’ – Returns [cell of numeric] a vector of the model eigenvalues that are smaller
than one in magnitude (allowing for rounding errors around one).

• ’unitRoots’ – Returns [cell of numeric] a vector of the model eigenvalues that equal one in
magnitude (allowing for rounding errors around one).

• ’unstableRoots’ [cell of numeric] A vector of the model eigenvalues that are greater than
one in magnitude (allowing for rounding errors around one).

103

Models (model Objects): get

Model structure, solution, build

• ’build’ – Returns [numeric] IRIS version number under which the model object has been
built.

• ’eqtnBlk’ – Returns [cell] of cell str with the recursive block structure of steady-state
equations (if the block-recursive analysis has already been performed).

• ’log’ – Returns [struct] a database with true for each log-linearised variables, and false

for each linearised variable.

• ’maxLag’ – Returns [numeric] the maximum lag in the model.

• ’maxLead’ – Returns [numeric] the maximum lead in the model.

• ’nameBlk’ – Returns [cell] of cell str with the recursive block structure of variable names (if
the block-recursive analysis has already been performed).

• ’stationary’ – Returns [struct] a database with true for each stationary variables, and
false for each unit-root (non-stationary) variables (under current solution).

• ’nonStationary’ – Returns [struct] a database with true for each unit-root (non-stationary)
varible, and false for each stationary variable (under current solution).

• ’stationaryList’ – Returns [cellstr] the list of stationary variables (under current solution).

• ’nonStationaryList’ – Returns [cellstr] cell with the list of unit-root (non-stationary)
variables (under current solution).

• ’initCond’ – Returns [cellstr] the list of the lagged transition variables that need to be
supplied as initial conditions in simulations and forecasts. The list of the initial conditions
is solution-specific as the state-spece coefficients at some of the lags may evaluate to zero
depending on the current parameters.

• ’yVector’ – Returns [cellstr] the list of measurement variables in order of their appearance
in the rows and columns of state-space matrices (effectively identical to ’yList’) from the
model/sspace P145 function.

• ’xVector’ – Returns [cellstr] the list of transition variables, and their auxiliary lags and
leads, in order of their appearance in the rows and columns of state-space matrices from the
model/sspace P145 function.

• ’xfVector’ – Returns [cellstr] the list of forward-looking (i.e. non-predetermined) transition
variables, and their auxiliary lags and leads, in order of their appearance in the rows and
columns of state-space matrices from the model/sspace P145 function.

• ’xbVector’ – Returns [cellstr] the list of backward-looking (i.e. predetermined) transition
variables, and their auxiliary lags and leads, in order of their appearance in the rows and
columns of state-space matrices from the model/sspace P145 function.

104

Models (model Objects): get

• ’eVector’ – Returns [cellstr] the list of the shocks in order of their appearance in the rows and
columns of state-space matrices (effectively identical to ’eList’) from the model/sspace P145

function.

Description

First-order Taylor expansion of equations

The expressions for symbolic/automatic derivatives of individual model equations returned by
’derivatives’ are expressions that evaluate the derivatives with respect to all variables present in
that equation at once. The list of variables with respect to which each equation is differentiated is
returned by ’wrt’.

The expressions returned by the query ’derivatives’ can refer to

• the names of model parameters, such as alpha;
• the names of transition or measurement variables, such as X;
• the lags or leads of variables, such as X{-1} or X{2}.

Note that the lags and leads of variables must be, in general, preserved in the derivatives for non-
stationary (unit-root) models. For stationary models, the lags and leads can be removed and each
simply replaced with the current date of the respective variable.

Example

d = get(m,’derivatives’);

w = get(m,’wrt’);

The 1-by-N cell array d (where N is the total number of equations in the model) will contain
expressions that evaluate to the vector of derivatives of the individual equations w.r.t. to the
variables present in that equation:

d{k}

is an expression that returns, in general, a vector of M numbers. These M numbers are the
derivatives of the k-th equation w.r.t to M variables whose list is in

w{k}

105

Models (model Objects): icrf

horzcat
Combine two compatible model objects in one object with multiple parameterisa-
tions

Syntax

M = [M1,M2,...]

Input arguments

• M1, M2 [model] - Compatible model objects that will be combined; the input models must
be based on the same model file.

Output arguments

• M [model] - Output model object that combines the input model objects as multiple param-
eterisations.

Description

Example

icrf
Initial-condition response functions

Syntax

S = icrf(M,NPer,...)

S = icrf(M,Range,...)

Input arguments

• M [model] - Model object for which the initial condition responses will be simulated.

• Range [numeric | char] - Date range with the first date being the shock date.

• NPer [numeric] - Number of periods.

106

Models (model Objects): ifrf

Output arguments

• S [struct] - Database with initial condition response series.

Options

• ’delog=’ [true | false] - Delogarithmise the responses for variables declared as !log_variables.

• ’size=’ [numeric | 1 for linear models | log(1.01) for non-linear models] - Size of the
deviation in initial conditions.

Description

Example

ifrf
Frequency response function to shocks

Syntax

[W,List] = ifrf(M,Freq,...)

Input arguments

• M [model] - Model object for which the frequency response function will be computed.

• Freq [numeric] - Vector of frequencies for which the response function will be computed.

Output arguments

• W [namedmat | numeric] - Array with frequency responses of transition variables (in rows)
to shocks (in columns).

• List [cell] - List of transition variables in rows of the W matrix, and list of shocks in columns
of the W matrix.

107

Models (model Objects): islinear

Options

• ’matrixFmt=’ [’namedmat’ | ’plain’] - Return matrix W as either a namedmat P205 object
(i.e. matrix with named rows and columns) or a plain numeric array.

• ’select=’ [@all | char | cellstr] - Return IFRF for selected variables only; @all means all
variables.

Description

Example

iscompatible
True if two models can occur together on the LHS and RHS in an assignment

Syntax

Flag = iscompatible(M1,M2)

Input arguments

• M1, M2 [model] - Two model objects that will be tested for compatibility.

Output arguments

• Flag [true | false] - True if M1 and M1 can occur in an assignment, M1(...) = M2(...) or
horziontal concatenation, [M1,M2].

Description

The function compares the names of all variables, shocks, and parameters, and the composition of
the state-space vectors.

Example

108

Models (model Objects): islocked

islinear
True for models declared as linear

Syntax

Flag = islinear(M)

Input arguments

• m [model] - Queried model object.

Output arguments

• Flag [true | false] - True if the model has been declared linear.

Description

The value returned dependes on whether the model has been declared as linear by the user when
constructing the model object by calling the model/model P122 function. In other words, no check
is performed whether or not the model is actually linear.

Example

m = model(’mymodel.file’,’linear=’,true);

islinear(m)

ans =

1

islocked
Get lock status of dynamic links or sstate update equations

Syntax

List = islocked(M,’!links’)

Flag = islocked(M,’!links’,Name);

109

Models (model Objects): islog

List = islocked(M,’!sstate_update’);

Flag = islocked(M,’!sstate_update’,Name);

Input arguments

• M [model] - Model object.

• Name [char] - Name of LHS variable in links or sstate update equations whose status will be
returned.

Output arguments

• List [cellstr] - List of LHS names in !links P37 or !sstate_update P?? equations that
are currently locked in the model object M.

• Flag [true | false] - Lock status (true if locked, false if not locked) of LHS name Name in
!links P37 or !sstate_update P?? equations.

Example

islog
True for log-linearised variables

Syntax

Flag = islog(M,Name)

Input arguments

• M [model] - Model object.

• Name [char | cellstr] - Name or names of model variable(s).

Output arguments

• Flag [true | false] - True for log variables.

110

Models (model Objects): isname

Description

Example

ismissing
True if some initical conditions are missing from input database

Syntax

[Flag,List] = ismissing(M,Inp,Range)

Input arguments

• M [model] - Model object.

• Inp [struct] - Input database from which initical conditions are obtained.

• Range [numeric] - Simulation range.%

Output arguments

• Flag [true | false] - True if one or more initial conditions required for simulation of the
model M are missing from the database Inp.

• List [cellstr] - List of initial conditions missing from the database Inp.

Description

The complete list of initial conditions required for simulating the model M can be obtained by

get(M,’required’)

Example

111

Models (model Objects): isnan

isname
True for valid names of variables, parameters, or shocks in model object

Syntax

Flag = isname(M,Name)

[Flag,Flag,...] = isname(M,Name,Name,...)

Input arguments

• M [model] - Model object.

• Name [char] - A text string that will be matched against the names of variables, parameters
and shocks in the model object M.

Output arguments

• Flag [true | false] - True for input strings that are valid names in the model object M.

Description

Example

isnan
Check for NaNs in model object

Syntax

[Flag,List] = isnan(M,’parameters’)

[Flag,List] = isnan(M,’sstate’)

[Flag,List] = isnan(M,’derivatives’)

[Flag,List] = isnan(M,’solution’)

Input arguments

• M [model] - Model object.

112

Models (model Objects): isstationary

Output arguments

• Flag [true | false] - True if at least one NaN value exists in the queried category.

• List [cellstr] - List of parameters (if called with ’parameters’) or variables (if called with
’sstate’) that are assigned NaN in at least one parameterisation, or equations (if called with
’derivatives’) that produce an NaN derivative in at least one parameterisation.

Description

Example

issolved
True if model solution exists

Syntax

Flag = issolved(M)

Input arguments

• M [model] - Model object.

Output arguments

• Flag [true | false] - True for each parameterisation for which a stable unique solution exists
currently in the model object.

Description

Example

isstationary
True if model or specified combination of variables is stationary

113

Models (model Objects): jforecast

Syntax

Flag = isstationary(M)

Flag = isstationary(M,Name)

Flag = isstationary(M,LinComb)

Input arguments

• M [model] - Model object.

• Name [char] - Transition variable name.

• LinComb [char] - Text string defining a linear combination of transition variables; log variables
need to be enclosed in log(...).

Output arguments

• Flag [true | false] - True if the model (if called without a second input argument) or the
specified transition variable or combination of transition variables (if called with a second
input argument) is stationary.

Description

Example

In the following examples, m is a solved model object with two of its transition variables named X

and Y; the latter is a log variable:

isstationary(m)

isstationary(m,’X’)

isstationary(m,’log(Y)’)

isstationary(m,’X - 0.5*log(Y)’)

jforecast
Forecast with judgmental adjustments (conditional forecasts)

114

Models (model Objects): jforecast

Syntax

F = jforecast(M,D,Range,...)

Input arguments

• M [model] - Solved model object.

• D [struct] - Input data from which the initial condition is taken.

• Range [numeric] - Forecast range.

Output arguments

• F [struct] - Output struct with the judgmentally adjusted forecast.

Options

• ’anticipate=’ [true | false] - If true, real future shocks are anticipated, imaginary are
unanticipated; vice versa if false.

• ’currentOnly=’ [true | false] - If true, MSE matrices will be computed only for the
current-dated variables, not for their lags or leads (expectations).

• ’deviation=’ [true | false] - Treat input and output data as deviations from balanced-
growth path.

• ’dtrends=’ [@auto | true | false] - Measurement data contain deterministic trends.

• ’initCond=’ [’data’ | ’fixed’] - Use the MSE for the initial conditions if found in the input
data or treat the initical conditions as fixed.

• ’meanOnly=’ [true | false] - Return only mean data, i.e. point estimates.

• ’plan=’ [plan] - Simulation plan specifying the exogenised variables and endogenised shocks.

• ’vary=’ [struct | empty] - Database with time-varying std deviations or cross-correlations
of shocks.

Description

When adjusting the mean and/or std devs of shocks, you can use real and imaginary numbers ot
distinguish between anticipated and unanticipated shocks:

115

Models (model Objects): lhsmrhs

• any shock entered as an imaginary number is treated as an anticipated change in the mean
of the shock distribution;

• any std dev of a shock entered as an imaginary number indicates that the shock will be treated
as anticipated when conditioning the forecast on the reduced-form tunes.

• the same shock or its std dev can have both the real and the imaginary part.

Description

Example

length
Number of alternative parameterisations

Syntax

N = length(M)

Input arguments

• M [model | esteq] - Model or esteq object.

Output arguments

• N [numeric] - Number of alternative parameterisations.

Description

Example

lhsmrhs
Evaluate the discrepancy between the LHS and RHS for each model equation and
given data

116

Models (model Objects): lhsmrhs

Syntax for casual evaluation

Q = lhsmrhs(M,D,Range)

Syntax for fast evaluation

Q = lhsmrhs(M,YXE)

Input arguments

M [model] - Model object whose equations and currently assigned parameters will be evaluated.

YXE [numeric] - Numeric array created from an input database by calling the function data4lhsmrhs P79 ;
YXE contains the observations on the measurement variables, transition variables, and shocks or-
ganised row-wise.

• D [struct] - Input database with observations on measurement variables, transition variables,
and shocks on which the discrepancies will be evaluated.

• Range [numeric] - Date range on which the discrepancies will be evaluated.

Output arguments

Q [numeric] - Numeric array with discrepancies between the LHS and RHS for each model equation.

Description

The function lhsmrhs evaluates the discrepancy between the LHS and the RHS in each model
equation; each lead is replaced with the actual observation supplied in the input data. The function
lhsmrhs does not work for models with references to steady state values P53 .

The first syntax, with the array YXE pre-built in a call to data4lhsmrhs P79 is computationally
much more efficient if you need to evaluate the LHS-RHS discrepancies repeatedly for different
parameterisations.

The output argument D is an nEqtn by nPer by nAlt array, where nEqnt is the number of mea-
surement and transition equations, nPer is the number of periods used to create X in a prior call
to data4lhsmrhs P79 , and nAlt is the greater of the number of alternative parameterisations in M,
and the number of alternative datasets in the input data.

117

Models (model Objects): loglik

Example

YXE = data4lhsmrhs(M,d,range);

Q = lhsmrhs(M,YXE);

lock
Lock (disable) dynamic links or sstate update equations temporarily

Syntax

M = lock(M,’!links’)

M = lock(M,’!links’,Name1,Name2,...);

M = lock(M,’!sstate_update’);

M = lock(M,’!sstate_update’,Name1,Name2,...);

Input arguments

• M [model] - Model object.

• Name1, Name2 [char] - List of names whose links or sstate update equations will be temporarily
locked.

Output arguments

• M [model] - Model object with dynamic links !links P37 or steady-state update equations
!sstate_update P?? temporarily disabled, until unlock P156 .

Example

loglik
Evaluate minus the log-likelihood function in time or frequency domain

118

Models (model Objects): loglik

Full syntax

Input arguments marked with a ~ (tilde) sign may be omitted.

[Obj,V,F,PE,Delta,PDelta] = loglik(M,Inp,Range,~J,...)

Syntax for fast one-off likelihood evaluation

Input arguments marked with a ~ (tilde) sign may be omitted.

Obj = loglik(M,Inp,Range,~J,...)

Syntax for repeated fast likelihood evaluations

Input arguments marked with a ~ (tilde) sign may be omitted.

% Step #1: Initialise.

loglik(M,Inp,Range,~J,...,’persist=’,true);

% Step #2: Assign/change parameters.

M... = ...; % Change parameters.

% Step #3: Re-compute steady state and solution if necessary.

M = ...;

M = ...;

% Step #4: Evaluate likelihood.

L = loglik(M);

% Repeat steps #2, #3, #4 for different values of parameters.

% ...

Input arguments

• M [model] - Solved model object.

• Inp [struct | cell] - Input database from which observations for measurement variables will
be taken.

119

Models (model Objects): loglik

• Range [numeric | char] - Date range on which the Kalman filter will be run.

• ~J [struct | empty] - Database with user-supplied time-varying paths for std deviation, corr
coefficients, or medians for shocks; ~J is equivalent to using the option ’vary=’, and may be
omitted.

Output arguments

• Obj [numeric] - Value of minus the log-likelihood function (or other objective function if
specified in options).

• V [numeric] - Estimated variance scale factor if the ’relative=’ options is true; otherwise V

is 1.

• F [numeric] - Sequence of forecast MSE matrices for measurement variables.

• PE [struct] - Database with prediction errors for measurement variables; exp of prediction
errors for measurement variables declared as log variables.

• Delta [struct] - Databse with point estimates of the deterministic trend parameters specified
in the ’outoflik=’ option.

• PDelta [numeric] - MSE matrix of the estimates of the ’outoflik=’ parameters.

Options

• ’objDecomp=’ [true | false] - Decompose the objective function into the contributions of
individual time periods (in time domain) or individual frequencies (in frequency domain); the
contributions are added as extra rows in the output argument Obj.

• ’persist=’ [true | false] – Pre-process and store the overhead (data and options) for
subsequent fast calls.

See help on model/filter P93 for other options available.

Description

The number of output arguments you request when calling loglik affects computational efficiency.
Running the function with only the first output argument, i.e. the value of the likelihood function
(minus the log of it, in fact), results in the fastest performance.

The loglik function runs an identical Kalman filter as model/filter P93 , the only difference is
the types and order of output arguments returned.

120

Models (model Objects): lognormal

Fast evaluation of likelihood

Every time you change the parameters, you need to update the steady state and solution of the
model if necessary by yourself, before calling loglik. Follow these rules:

• If you only change std deviations and no other parameters, you don’t have to re-calculate
steady state or solution.

• If the model is linear, you only need to call solve P142 .

• The only exception to rules #2 and #3 is when the model has dynamic links P37 with
references to some steady state values. In that case, you must also run sstate P146 after
solve P142 in linear models to update the steady state.

• If the model is non-linear, and you only change parameters that affect transitory dynamics
and not the steady state, you only need to call solve P142 .

• If the model is non-linear, and you change parameters that affect both transitory dynamics
and steady state, you must run first sstate P146 and then solve P142 .

Example

lognormal
Characteristics of log-normal distributions returned from filter of forecast

Syntax

D = lognormal(M,D,...)

Input arguments

• M [model] - Model on which the filter or forecast function has been run.

• D [struct] - Struct or database returned from the filter or forecast function.

Output arguments

• D [struct] - Struct including new sub-databases with requested log-normal statistics.

121

Models (model Objects): model

Options

• ’fresh=’ [true | false] - Output structure will include only the newly computed databases.

• ’mean=’ [true | false] - Compute the mean of the log-normal distributions.

• ’median=’ [true | false] - Compute the median of the log-normal distributions.

• ’mode=’ [true | false] - Compute the mode of the log-normal distributions.

• ’prctile=’ [numeric | [5,95]] - Compute the selected percentiles of the log-normal distri-
butions.

• ’prefix=’ [char | ’lognormal’] - Prefix used in the names of the newly created databases.

• ’std=’ [true | false] - Compute the std deviations of the log-normal distributions.

Description

model
Create new model object based on model file

Syntax

M = model(FName,...)

M = model(M,...)

Input arguments

• FName [char | cellstr] - Name(s) of model file(s) that will be loaded and converted to a new
model object.

• M [model] - Existing model object that will be rebuilt as if from a model file.

Output arguments

• M [model] - New model object based on the input model code file or files.

122

Models (model Objects): model

Options

• ’assign=’ [struct | empty] - Assign model parameters and/or steady states from this database
at the time the model objects is being created.

• ’baseYear=’ [numeric | 2000] - Base year for constructing deterministic time trends.

• ’blazer=’ [true | false] - Perform block-recursive analysis of steady-state equations at the
time the model object is being created; the option works only in nonlinear models.

• ’comment=’ [char | empty] - Text comment attached to the model object.

• ’declareParameters=’ [true | false] - If false, skip parameter declaration in the model
file, and determine the list of parameters automatically as names found in equations but not
declared.

• ’epsilon=’ [numeric | epsˆ(1/4)] - The minimum relative step size for numerical differenti-
ation.

• ’linear=’ [true | false] - Indicate linear models.

• ’makeBkw=’ [@auto | @all | cellstr | char] - Variables included in the list will be made part
of the vector of backward-looking variables; @auto means the variables that do not have any
lag in model equations will be put in the vector of forward-looking variables.

• ’multiple=’ [true | false] - Allow each variable, shock, or parameter name to be declared
(and assigned) more than once in the model file.

• ’optimal=’ [’commitment’ | ’discretion’] - Type of optimal policy calculated; only applies
when the keyword min P58 is used in the model file.

• ’removeLeads=’ [true | false] - Remove all leads from the state-space vector, keep included
only current dates and lags.

• ’sstateOnly=’ [true | false] - Read in only the steady-state versions of equations (if
available).

• ’std=’ [numeric | @auto] - Default standard deviation for model shocks; @auto means 1 for
linear models and log(1.01) for nonlinear models.

• ’userdata=’ [. . . | empty] - Attach user data to the model object.

Description

Loading a model file

The model function can be used to read in a model file P22 named fname, and create a model
object m based on the model file. You can then work with the model object in your own m-files,
using using the IRIS model functions P64 and standard Matlab functions.

123

Models (model Objects): neighbourhood

If fname is a cell array of more than one file names then all files are combined together in order of
appearance.

Re-building an existing model object

The only instance where you may need to call a model function on an existing model object is to
change the ’removeLeads=’ option. Of course, you can always achieve the same by loading the
original model file.

Example

Read in a model code file named my.model, and declare the model as linear:

m = model(’my.model’,’linear’,true);

Example

Read in a model code file named my.model, declare the model as linear, and assign some of the
model parameters:

m = model(’my.model’,’linear=’,true,’assign=’,P);

Note that this is equivalent to

m = model(’my.model’,’linear=’,true);

m = assign(m,P);

unless some of the parameters passed in to the model fuction are needed to evaluate if P34 or
!switch P45 expressions.

neighbourhood
Evaluate the local behaviour of the objective function around the estimated pa-
rameter values

Syntax

[D,FigH,AxH,ObjH,LikH,EstH,BH] = neighbourhood(M,PS,Neigh,...)

124

Models (model Objects): neighbourhood

Input arguments

• M [model | bkwmodel] - Model or bkwmodel object.

• PS [poster] - Posterior simulator (poster) object returned by the model/estimate P83 func-
tion.

• Neigh [numeric] - The neighbourhood in which the objective function will be evaluated
defined as multiples of the parameter estimates.

Output arguments

• D [struct] - Struct describing the local behaviour of the objective function and the data
likelihood (minus log likelihood) within the specified range around the optimum for each
parameter.

The following output arguments are non-empty only if you choose ’plot=’ true:

• FigH [numeric] - Handles to the figures created.

• AxH [numeric] - Handles to the axes objects created.

• ObjH [numeric] - Handles to the objective function curves plotted.

• LikH [numeric] - Handles to the data likelihood curves plotted.

• EstH [numeric] - Handles to the actual estimate marks plotted.

• BH [numeric] - Handles to the bounds plotted.

Options

• ’plot=’ [true | false] - Call the grfun.plotneigh P474 function from within neighbourhood

to visualise the results.

• ’neighbourhood=’ [struct | empty] - Struct specifying the neighbourhood points for some
of the parameters; these points will be used instead of those based on Neigh.

Plotting options

See help on grfun.plotneigh P474 for options available when you choose ’plot=’ true.

125

Models (model Objects): omega

Description

In the output database, D, each parameter is a 1-by-3 cell array. The first cell is a vector of parameter
values at which the local behaviour was investigated. The second cell is a matrix with two column
vectors: the values of the overall minimised objective function (as set up in the estimate P83

function), and the values of the data likelihood component. The third cell is a vector of four
numbers: the parameter estimate, the value of the objective function at optimum, the lower bound
and the upper bound.

Example

omega
Get or set the covariance matrix of shocks

Syntax for getting covariance matrix

OMG = omega(M)

Syntax for setting covariance matrix

M = omega(M,OMG)

Input arguments

• M [model | bkwmodel] - Model or bkwmodel object.

• OMG [numeric] - Covariance matrix that will be converted to new values for std deviations
and cross-corr coefficients.

Output arguments

• OMG [numeric] - Covariance matrix of shocks or residuals based on the currently assigned std
deviations and cross-correlation coefficients.

• M [model | bkwmodel] - Model or bkwmodel object with new values for std deviations and
cross-corr coefficients based on the input covariance matrix.

126

Models (model Objects): regress

Description

Example

refresh
Refresh dynamic links

Syntax

M = refresh(M)

Input arguments

• M [model] - Model object whose dynamic links will be refreshed.

Output arguments

• M [model] - Model object with dynamic links refreshed.

Description

Example

m = refresh(m);

regress
Centred population regression for selected model variables

Syntax

[B,CovRes,R2] = regress(M,Lhs,Rhs,...)

127

Models (model Objects): reporting

Input arguments

• M [model] - Model on whose covariance matrices the popolation regression will be based.

• Lhs [char | cellstr] - Lhs variables in the regression; each of the variables must be part of the
state-space vector.

• Rhs [char | cellstr] - Rhs variables in the regression; each of the variables must be part of
the state-space vector, or must refer to a larger lag of a transition variable present in the
state-space vector.

Output arguments

• B [namedmat | numeric] - Population regression coefficients.

• CovRes [namedmat | numeric] - Covariance matrix of residuals from the population regression.

• R2 [numeric] - Coefficient of determination (R-squared).

Options

• ’matrixFmt=’ [’namedmat’ | ’plain’] - Return matrices B and CovRes as either namedmat P205

object (i.e. matrices with named rows and columns) or plain numeric arrays.

Description

Population regressions calculated by this function are always centred. This means the regressions
are always calculated as if estimated on observations with their uncondional means (the steady-state
levels) removed from them.

The Lhs and Rhs variables that are log variables must include log() explicitly in their names.
For instance, if X is declared to be a log variable, then you must refer to log(X) or log(X{-1}).

Example

[B,C] = regress(’log(R)’,{’log(R{-1})’,’log(dP)’});

reporting
Evaluate reporting equations from within model object

128

Models (model Objects): resample

Syntax

D = reporting(M,D,Range,...)

Input arguments

• M [model] - Model object with reporting equations.

• D [struct] - Input database that will be used to evaluate the reporting equations.

• Range [numeric | char] - Date range on which the reporting equations will be evaluated.

Output arguments

• D [struct] - Output database with reporting variables.

Options

See rpteq/run P164 for options available.

Description

resample
Resample from the model implied distribution

Syntax

Input arguments marked with a ~ (tilde) sign may be omitted.

Oupt = resample(M,~Inp,Range,~NDraw,~J,...)

Input arguments

• M [model] - Solved model object with single parameterization.

129

Models (model Objects): resample

• Inp [struct | empty] - Input data (if needed) for the distributions of initial condition and/or
empirical shocks; if not bootstrap is invovled

• Range [numeric | char] - Resampling date range.

• ~NDraw [numeric | 1] - Number of draws; may be omitted.

• ~J [struct | []] - Database with user-supplied time-varying paths for std deviation, corr
coefficients, or medians for shocks; ~J is equivalent to using the option ’vary=’, and may be
omitted.

Output arguments

• Outp [struct] - Output database with resampled data.

Options

• ’bootstrapMethod=’ [’efron’ | ’wild’ | numeric] - Numeric options correspond to block
sampling methods. Use a positive integer to specify a fixed block length, or a value strictly
between zero and one to specify random block lengths based on a geometric distribution.

• ’deviation=’ [true | false] - Treat input and output data as deviations from balanced-
growth path.

• ’dtrends=’ [@auto | true | false] - Add deterministic trends to measurement variables.

• ’method=’ [’bootstrap’ | ’montecarlo’] - Method of randomising shocks and initial condi-
tion.

• ’progress=’ [true | false] - Display progress bar in the command window.

• ’randomInitCond=’ [true | false | numeric] - Randomise initial condition; a number means
the initial condition will be simulated using the specified number of extra pre-sample periods.

• ’stateVector=’ [’alpha’ | ’x’] - When resampling initial condition, use the transformed
state vector, alpha, or the vector of original variables, x; this option is meant to guarantee
replicability of results.

• ’svdOnly=’ [true | false] - Do not attempt Cholesky and only use SVD to factorize the
covariance matrix when resampling initial condition; only applies when ’randomInitCond=’

true.

Description

When you use wild bootstrap for resampling the initial condition, the results are based on an
assumption that the mean of the initial condition is the asymptotic mean implied by the model
(i.e. the steady state).

130

Models (model Objects): reset

References

1. Politis, D. N., & Romano, J. P. (1994). The stationary bootstrap. Journal of the American
Statistical Association, 89(428), 1303-1313.

Example

reset
Reset specific values within model object

Syntax

M = reset(M)

M = reset(M,Req1,Req2,...)

Input arguments

• M [model] - Model object in which the requested type(s) of values will be reset.

• Req1, Req2, . . . [’corr’ | ’parameters’ | ’sstate’ | ’std’ | ’stdcorr’] - Requested type(s)
of values that will be reset; if omitted, everything will be reset.

Output arguments

• M [model] - Model object with the requested values reset.

Description

• ’corr’ - All cross-correlation coefficients will be reset to 0.

• ’parameters’ - All parameters will be reset to NaN.

• ’sstate’ - All steady state values will be reset to NaN.

• ’std’ - All std deviations will be reset to 1 (in linear models) or log(1.01) (in non-linear
models).

• ’stdcorr’ - Equivalent to ’std’ and ’corr’.

131

Models (model Objects): rollback

Example

-IRIS Toolbox. -Copyright (c) 2007-2015 IRIS Solutions Team.

rollback
Prepare database for a rollback run of Kalman filter

Syntax

Inp = rollback(M,Inp,Range,Date)

Input argument

• M [model] - Model object with a single parameterization.

• Inp [struct] - Database with a single set of input data for a Kalman filter.

• Range [numeric | char] - Filter data range.

• Date [numeric] - Date up to which the input data entries will be rolled back, see Description.

Output argument

• Inp [struct] - New database with new data sets added to each tseries for measurement
variables, taking out one observation at a time, see Description.

Description

The function rollback takes a database with a single set of input data that is supposed to be used
in a future call to a Kalman filter, model/filter P93 , and creates additional data sets (i.e. addition
columns in tseries for measurement variables contained in the database) in the following way:

• the total number of the new data sets (new columns added to each measurement tseries) is
N = NPer*Ny where NPer is the number of rollback periods, from Date to the end of Range
(including both), and Ny is the number of measurement variables in the model M.

• The first additional data set is created by removing the observation on the last measurement
variable in the last period (i.e. end of Range) and replacing it with a NaN.

132

Models (model Objects): set

• The second additional data set is created by removing the observatoins on the last two mea-
surement variables in the last period, and so on.

• The N-th (last) additional data set is created by removing all observations in all periods
between Data and end of Range.

Example

If the model m contains, for instance, 3 measurement variable, the following commands will produce
a total of 13 Kalman filter runs, the first one on the original database d, and the other 12 on the
rollback data sets, with individual observations removed one by one:

dd = rollback(m,d,qq(2000,1):qq(2015,4),qq(2015,1));

[mf,f] = filter(m,dd,qq(2000,1):qq(2015,4));

set
Change modifiable model object property

Syntax

M = set(M,Request,Value)

M = set(M,Request,Value,Request,Value,...)

Input arguments

• M [model] - Model object.

• Request [char] - Name of a modifiable model object property that will be changed.

• Value [. . .] - Value to which the property will be set.

Output arguments

• M [model] - Model object with the requested property or properties modified.

133

Models (model Objects): shockdb

Valid requests to model objects

Equation labels and aliases

• ’yLabels=’, ’xLabels=’, ’dLabels=’, ’lLabels=’ [cellstr] - Change the labels attached to,
respectively, measurement equations (y), transition equations (x), deterministic trends (d),
and dynamic links (d).

• ’labels=’ [cell] - Change the labels attached to all equations; needs to be a cellstr matching
the size of get(M,’labels’).

• ’yeqtnAlias=’, ’xeqtnAlias=’, ’deqtnAlias=’, ’leqtnAlias=’ [cellstr] - Change the aliases
of, respectively, measurement equations (y), transition equations (x), deterministic trends (d),
and dynamic links (d).

• ’eqtnAlias=’ [cell] - Change the aliases of all equations; needs to be a cellstr matching the
size of get(M,’eqtnAlias’).

Descriptions and aliases of variables, shocks, and parameters

• ’yDescript=’, ’xDescript=’, ’eDescript=’, ’pDescript=’ [cellstr] - Change the descrip-
tions of, respectively, measurement variables (y), transition variables (x), shocks (e), and
exogenous variables (g).

• ’descript=’ [struct] - Change the descriptions of all variables, parameters, and shocks;
needs to be a struct (database) with fields corresponding to model names.

• ’yAlias=’, ’xAlias=’, ’eAlias=’, ’pAlias=’ [cellstr] - Change the aliases of, respectively,
measurement variables (y), transition variables (x), shocks (e), and exogenous variables (g).

• ’alias=’ [struct] - Change the aliases of all variables, parameters, and shocks; needs to be
a struct (database) with fields corresponding to model names.

Other requests

• ’nAlt=’ [numeric] - Change the number of alternative parameterisations.

• ’stdVec=’ [numeric] - Change the whole vector of std deviations.

• ’tOrigin=’ [numeric] - Change the base year for computing deterministic time trends in
measurement variables.

• ’epsilon=’ [numeric] - Change the relative differentiation step when computing Taylor
expansion.

134

Models (model Objects): shockplot

shockdb
Create model-specific database with random shocks

Syntax

Input arguments marked with a ~ (tilde) sign may be omitted.

D = shockdb(M,~D,Range,~NDraw,...)

Input arguments

• M [model] - Model object.

• D [struct | empty] - Input database to which shock time series will be added; if omitted
or empty, a new database will be created; if D already contains shock time series, the data
generated by shockdb will be summed up wit the existing data.

• Range [numeric] - Date range on which the shock time series will be generated and returned;
if D already contains shock time series going before or after Range, these will be clipped down
to Range in the output database.

• NDraw [numeric] - Number of draws (i.e. columns) generated for each shock; if omitted, the
number of draws is equal to the number of alternative parameterizations in the model M, or
to the number of columns in shock series existing in the input database D.

Output arguments

• D [struct] - Database with shock time series added.

Options

• ’randFunc=’ [@lhsnorm | @randn | @zeros] - Function used to generate random draws for
new shock time series; if @zeros, the new shocks will simply be filled with zeros; the random
numbers will be adjusted by the respective covariance matrix implied by the current model
parameterization.%

Description

Example

135

Models (model Objects): shockplot

shockplot
Short-cut for running and plotting plain shock simulation

Syntax

[S,FF,AA] = shockplot(M,ShockName,SimRange,PlotList,...)

Input arguments

• M [model] - Model object that will be simulated.

• ShkName [char] - Name of the shock that will be simulated.

• Range [numeric | char] - Date range on which the shock will be simulated.

• PlotList [cellstr] - List of variables that will be reported; you can use the syntax of
dbase/dbplot P405 .

Output arguments

• S [struct] - Database with simulation results.

• FF [numeric] - Handles of figure windows created.

• AA [numeric] - Handles of axes objects created.

Options affecting the simulation

• ’deviation=’ [true | false] - See the option ’deviation=’ in model/simulate P137 .

• ’dtrends=’ [@auto | true | false] - See the option ’dtrends=’ option in model/simulate P137 .

• ’shockSize=’ [’std’ | numeric] - Size of the shock that will be simulated; ’std’ means that
one std dev of the shock will be simulated.

Options affecting the graphs

See help on dbase/dbplot P405 for other options available.

136

Models (model Objects): simulate

Description

The simulated shock always occurs at time t=1. Starting the simulation range, SimRange, before
t=1 allows you to simulate anticipated shocks.

The graphs automatically include one pre-sample period, i.e. one period prior to the start of the
simulation.

Example

simulate
Simulate model

Syntax

S = simulate(M,D,Range,...)

[S,Flag,AddF,Delta] = simulate(M,D,Range,...)

Input arguments

• M [model] - Solved model object.

• D [struct | cell] - Input database or datapack from which the initial conditions and shocks
from within the simulation range will be read.

• Range [numeric | char] - Simulation range.

Output arguments

• S [struct | cell] - Database with simulation results.

Output arguments in nonlinear simulations

• ExitFlag [cell | empty] - Cell array with exit flags for nonlinearised simulations.

• AddF [cell | empty] - Cell array of tseries with final add-factors added to first-order approxi-
mate equations to make nonlinear equations hold.

137

Models (model Objects): simulate

• Delta [cell | empty] - Cell array of tseries with final discrepancies between LHS and RHS in
equations marked for nonlinear simulations by a double-equal sign.

Options

• ’anticipate=’ [true | false] - If true, real future shocks are anticipated, imaginary are
unanticipated; vice versa if false.

• ’contributions=’ [true | false] - Decompose the simulated paths into contributions of
individual shocks.

• ’dbOverlay=’ [true | false | struct] - Use the function dboverlay to combine the simulated
output data with the input database, (or a user-supplied database); both the data preceeding
the simulation range and after the simulation range are appended.

• ’deviation=’ [true | false] - Treat input and output data as deviations from balanced-
growth path.

• ’dTrends=’ [@auto | true | false] - Add deterministic trends to measurement variables.

• ’ignoreShocks=’ [true | false] - Read only initial conditions from input data, and ignore
any shocks within the simulation range.

• ’method=’ [’firstorder’ | ’selective’ | ’global’] - Method of running simulations;
’firstorder’means first-order approximate solution (calculated around steady state); ’selective’
means equation-selective nonlinear method; ’global’ means global nonlinear method (avail-
able only in models with no leads).

• ’plan=’ [plan] - Specify a simulation plan to swap endogeneity and exogeneity of some
variables and shocks temporarily, and/or to simulate some nonlinear equations.

• ’progress=’ [true | false] - Display progress bar in the command window.

• ’sparseShocks=’ [true | false] - Store anticipated shocks (including endogenized anticipated
shocks) in sparse array.

Options for equation-selective nonlinear simulations

• ’solver=’ [@qad | @fsolve | @lsqnonlin] - Solution algorithm; see Description.

• ’nonlinPer=’ [numeric | 0 | @all] - Horizon (number of periods from the beginning of the
simulation and from the beginning of each simulation segment) over which nonlinearities will
be preserved; the remaining periods will be simulated using first-order approximate solution.

138

Models (model Objects): simulate

Options for equation-selective nonlinear simulations with @qad solver

• ’addSstate=’ [true | false] - Add steady state levels to simulated paths before evaluating
nonlinear equations; this option is used only if ’deviation=’ true.

• ’display=’ [true | false | numeric | Inf] - Report iterations on the screen; if ’display=’
N, report every N iterations; if ’display=’ Inf, report only final iteration.

• ’error=’ [true | false] - Throw an error whenever a nonlinear simulation fails converge; if
false, only an warning will display.

• ’lambda=’ [numeric | 1] - Step size (between 0 and 1) for add factors added to nonlinearised
equations in every iteration; see also ’optimLambda=’.

• ’optimLambda=’ [true | false] - Before the first iteration, find the optimal step size on a
grid of 10 points between 0 and Lambda; if false, the value assigned to Lambda is used and
no grid search is performed.

• ’reduceLambda=’ [numeric | 0.5] - Reduction factor (between 0 and 1) by which lambda will
be multiplied if the nonlinear simulation gets on an divergence path.

• ’upperBound=’ [numeric | 1.5] - Multiple of all-iteration minimum achieved that triggers a
reversion to that iteration and a reduciton in lambda.

• ’maxIter=’ [numeric | 100] - Maximum number of iterations.

• ’tolerance=’ [numeric | 1e-5] - Convergence tolerance.

Options for nonlinear simulations with Optim Tbx solver

• ’optimSet=’ [cell | struct] - Optimization Tbx options.

Options for global nonlinear simulations

• ’optimSet=’ [cell | struct] - Optimization Tbx options.

• ’solver=’ [@fsolve | @lsqnonlin] - Solution algorithm; see Description.

Description

The function simulate(...) simulates a model on the specified simulation range. By default, the
simulation is based on a first-order approximate solution (calculated around steady state). To run
nonlinear simulations, use the option ’nonlinear=’ (to set the number of periods

139

Models (model Objects): simulate

Output range

Time series in the output database, S, are are defined on the simulation range, Range, plus include
all necessary initial conditions, ie. lags of variables that occur in the model code. You can use the
option ’dboverlay=’ to combine the output database with the input database (ie. to include a
longer history of data in the simulated series).

Deviations from steady-state and deterministic trends

By default, both the input database, D, and the output database, S, are in full levels and the simu-
lated paths for measurement variables include the effect of deterministic trends, including possibly
exogenous variables. The default behavior can be changed by changing the options ’deviation=’
and ’dTrends=’.

The default value for ’deviation=’ is false. If set to true, then the input database is expected to
contain data in the form of deviations from their steady state levels or paths. For ordinary variables
(ie. variables whose log status is false), it is xt� �xt, meaning that a 0 indicates that the variable is
at its steady state and e.g. 2 indicates the variables exceeds its steady state by 2. For log variables
(ie. variables whose log status is true), it is xt=�xt, meaning that a 1 indicates that the variable is
at its steady state and e.g. 1.05 indicates that the variable is 5 per cent above its steady state.

The default value for ’dTrends=’ is @auto. This means that its behavior depends on the option
’deviation=’. If ’deviation=’ false then deterministic trends are added to measurement vari-
ables, unless you manually override this behavior by setting ’dTrends=’ false. On the other hand,
if ’deviation=’ true then deterministic trends are not added to measurement variables, unless you
manually override this behavior by setting ’dTrends=’ true.

Simulating contributions of shocks

Use the option ’contributions=’ true to request the contributions of shocks to the simulated path
for each variable; this option cannot be used in models with multiple alternative parameterizations
or with multiple input data sets.

The output database, S, contains Ne+2 columns for each variable, where Ne is the number of shocks
in the model:

• the first columns 1. . . Ne are the contributions of the Ne individual shocks to the respective
variable;

• column Ne+1 is the contribution of initial condition, th econstant, and deterministic trends,
including possibly exogenous variables;

• column Ne+2 is the contribution of nonlinearities in nonlinear simulations (it is always zero
otherwise).

140

Models (model Objects): simulate

The contributions are additive for ordinary variables (ie. variables whose log status is false), and
multplicative for log variables (ie. variables whose log status is true). In other words, if S is the
output database from a simulation with ’contributions=’ true, X is an ordinary variable, and Z

is a log variable, then

sum(S.X,2)

(ie. the sum of all Ne+2 contributions in each period, ie. summation goes across 2nd dimension)
reproduces the final simulated path for the variable X, whereas

prod(S.Z,2)

(ie. the product of all Ne+2 contributions) reproduces the final simulated path for the variable Z.

Simulations with multiple parameterisations and/or multiple data sets

If you simulate a model with N parameterisations and the input database contains K data sets (ie.
each variable is a time series with K columns), then the following happens:

• The model will be simulated a total of P = max(N,K) number of times. This means that each
variables in the output database will have P columns.

• The 1st parameterisation will be simulated using the 1st data set, the 2nd parameterisation
will be simulated using the 2nd data set, etc. until you reach either the last parameterisation
or the last data set, ie. min(N,K). From that point on, the last parameterisation or the last
data set will be simply repeated (re-used) in the remaining simulations.

• Formally, the I-th column in the output database, where I = 1, ..., P, is a simulation of
the min(I,N)-th model parameterisation using the min(I,K)-th input data set number.

Equation-selective nonlinear simulations

The equation-selective nonlinear simulation approach is invoked by setting ’method=’ ’selective’.
In equation-selective nonlinear simulations, the solver tries to find add-factors to user-selected
nonlinear equations (ie. equations with =# instead of the equal sign in the model file) in the
first-order solution such that the original nonlinear equations hold for simulated trajectories (with
expectations replaced with actual leads).

Two numerical approaches are available, controlled by the option ’solver=’:

• ‘QaD’ - a quick-and-dirty, but less robust method (default);

• @fsolve, @lsqnonlin - which are standard Optimization Tbx routines, slower but likely to
converge for a wider variety of simulations.

141

Models (model Objects): solve

Global nonlinear simulations

The global nonlinear simulation approach is invoked by setting ’method=’ ’global’ and is available
only in models with no leads (expectations). In global nonlinear simulations, the entire model
is solved as a system of nonlinear equations, period by period, using one of the following two
Optimization Tbx routines: @fsolve or @lsqnonlin (default).

Example

single
Convert solution matrices to single precision

Syntax

m = single(m)

Input arguments

• m [model] - Model objects whose solution matrices will be converted to single precision.

Output arguments

• m [model] - Model objects single-precision solution matrices.

Description

solve
Calculate first-order accurate solution of the model

Syntax

M = solve(M,...)

142

Models (model Objects): solve

Input arguments

• M [model] - Paramterised model object. Non-linear models must also have a steady state
values assigned.

Output arguments

• M [model] - Model with newly computed solution.

Options

• ’expand=’ [numeric | 0 | NaN] - Number of periods ahead up to which the model solution will
be expanded; if NaN the matrices needed to support solution expansion are not calculated and
stored at all and the model cannot be used later in simulations or forecasts with anticipated
shocks or plans.

• ’eqtn=’ [all | ’measurement’ | ’transition’] - Update existing solution in the measurement
block, or the transition block, or both.

• ’error=’ [true | false] - Throw an error if no unique stable solution exists; if false, a
warning message only will be displayed.

• ’linear=’ [@auto | true | false] - Solve the model using a linear approach, i.e. differentiating
around zero and not the currently assigned steady state.

• ’progress=’ [true | false] - Display progress bar in the command window.

• ’select=’ [true | false] - Automatically detect which equations need to be re-differentiated
based on parameter changes from the last time the system matrices were calculated.

• ’warning=’ [true | false] - Display warnings produced by this function.

Description

The IRIS solver uses an ordered QZ (or generalised Schur) decomposition to integrate out future
expectations. The QZ may (very rarely) fail for numerical reasons. IRIS includes two patches to
handle the some of the QZ failures: a SEVN2 patch (Sum-of-EigenValues-Near-Two), and an E2C2S
patch (Eigenvalues-Too-Close-To-Swap).

• The SEVN2 patch: The model contains two or more unit roots, and the QZ algorithm in-
terprets some of them incorrectly as pairs of eigenvalues that sum up accurately to 2, but
with one of them significantly below 1 and the other significantly above 1. IRIS replaces the
entries on the diagonal of one of the QZ factor matrices with numbers that evaluate to two
unit roots.

143

Models (model Objects): srf

• The E2C2S patch: The re-ordering of thq QZ matrices fails with a warning ’Reordering

failed because some eigenvalues are too close to swap.’ IRIS attempts to re-order the
equations until QZ works. The number of attempts is limited to N-1 at most where N is the
total number of equations.

Example

srf
Shock response functions, first-order solution only

Syntax

S = srf(M,NPer,...)

S = srf(M,Range,...)

Input arguments

• M [model] - Model object whose shock responses will be simulated.

• Range [numeric | char] - Simulation date range with the first date being the shock date.

• NPer [numeric] - Number of simulation periods.

Output arguments

• S [struct] - Database with shock response time series.

Options

• ’delog=’ [true | false] - Delogarithmise shock responses for log variables afterwards.

• ’select=’ [cellstr | @all] - Run the shock response function for a selection of shocks only;
@all means all shocks are simulated.

• ’size=’ [@auto | numeric] - Size of the shocks that will be simulated; @auto means that each
shock will be set to its std dev currently assigned in the model object M.

144

Models (model Objects): sspace

Description

Example

sspace
State-space matrices describing the model solution

Syntax

[T,R,K,Z,H,D,U,Omg] = sspace(M,...)

Input arguments

• M [model] - Solved model object.

Output arguments

• T [numeric] - Transition matrix.

• R [numeric] - Matrix at the shock vector in transition equations.

• K [numeric] - Constant vector in transition equations.

• Z [numeric] - Matrix mapping transition variables to measurement variables.

• H [numeric] - Matrix at the shock vector in measurement equations.

• D [numeric] - Constant vector in measurement equations.

• U [numeric] - Transformation matrix for predetermined variables.

• Omg [numeric] - Covariance matrix of shocks.

Options

• ’triangular=’ [true | false] - If true, the state-space form returned has the transition
matrix T quasi triangular and the vector of predetermined variables transformed accordingly;
this is the default form used in IRIS calculations. If false, the state-space system is based on
the original vector of transition variables.

145

Models (model Objects): sstate

Description

The state-space representation has the following form:

[xf;alpha] = T*alpha(-1) + K + R*e

y = Z*alpha + D + H*e

xb = U*alpha

Cov[e] = Omg

where xb is an nb-by-1 vector of predetermined (backward-looking) transition variables and their
auxiliary lags, xf is an nf-by-1 vector of non-predetermined (forward-looking) variables and their
auxiliary leads, alpha is a transformation of xb, e is an ne-by-1 vector of shocks, and y is an ny-by-1
vector of measurement variables. Furthermore, we denote the total number of transition variables,
and their auxiliary lags and leads, nx = nb + nf.

The transition matrix, T, is, in general, rectangular nx-by-nb. Furthremore, the transformed state
vector alpha is chosen so that the lower nb-by-nb part of T is quasi upper triangular.

You can use the get(m,’xVector’) function to learn about the order of appearance of transition
variables and their auxiliary lags and leads in the vectors xb and xf. The first nf names are the
vector xf, the remaining nb names are the vector xb.

sstate
Compute steady state or balance-growth path of the model

Syntax

[M,Flag] = sstate(M,...)

Input arguments

• M [model] - Parameterised model object.

Output arguments

• M [model] - Model object with newly computed steady state assigned.

146

Models (model Objects): sstate

• Flag [true | false] - True for parameterizations where steady state has been found success-
fully.

Options

• ’linear=’ [@auto | true | false] - Solve for steady state using a linear approach, i.e. based
on the first-order solution matrices and the vector of constants.

• ’warning=’ [true | false] - Display IRIS warning produced by this function.

Options for nonlinear models

• ’blocks=’ [true | false] - Re-arrarnge steady-state equations in recursive blocks before
computing steady state.

• ’display=’ [’iter’ | ’final’ | ’notify’ | ’off’] - Level of screen output, see Optim Tbx.

• ’endogenise=’ [cellstr | char | empty] - List of parameters that will be endogenised when
computing the steady state; the number of endogenised parameters must match the number
of transtion variables exogenised in the ’exogenised=’ option.

• ’exogenise=’ [cellstr | char | empty] - List of transition variables that will be exogenised
when computing the steady state; the number of exogenised variables must match the number
of parameters exogenised in the ’exogenise=’ option.

• ’fix=’ [cellstr | empty] - List of variables whose steady state will not be computed and kept
fixed to the currently assigned values.

• ’fixAllBut=’ [cellstr | empty] - Inverse list of variables whose steady state will not be
computed and kept fixed to the currently assigned values.

• ’fixGrowth=’ [cellstr | empty] - List of variables whose steady-state growth will not be
computed and kept fixed to the currently assigned values.

• ’fixGrowthAllBut=’ [cellstr | empty] - Inverse list of variables whose steady-state growth
will not be computed and kept fixed to the currently assigned values.

• ’fixLevel=’ [cellstr | empty] - List of variables whose steady-state levels will not be computed
and kept fixed to the currently assigned values.

• ’fixLevelAllBut=’ [cellstr | empty] - Inverse list of variables whose steady-state levels will
not be computed and kept fixed to the currently assigned values.

• ’growth=’ [true | false] - If true, both the steady-state levels and growth rates will be
computed; if false, only the levels will be computed assuming that the model is either
stationary or that the correct steady-state growth rates are already assigned in the model
object.

147

Models (model Objects): sstate

• ’logMinus=’ [cell | char | empty] - List of log variables whose steady state will be restricted
to negative values in this run of sstate.

• ’optimSet=’ [cell | empty] - Name-value pairs with Optim Tbx settings; see help optimset

for details on these settings.

• ’reuse=’ [true | false] - Reuse the steady-state values calculated for a parameterisation to
initialise the next parameterisation.

• ’solver=’ [’fsolve’ | ’lsqnonlin’] - Numerical routine to solve for steady state of nonlinear
models; it can be one of the two Optimization Tbx functions.

• ’sstate=’ [true | false | cell] - If true or a cell array, the steady state is re-computed in
each iteration; the cell array can be used to modify the default options with which the sstate
function is called.

• ’unlog=’ [cell | char | empty] - List of log variables that will be temporarily treated as
non-log variables in this run of sstate, i.e. their steady-state levels will not be restricted to
either positive or negative values.

Options for linear models

• ’solve=’ [true | false] - Solve model before computing steady state.

Description

Non-stationary models

For backward compatibility, the option ’growth=’ is set to false by default so that either the model
is assumed stationary or the steady-state growth rates have been already pre-assigned to the model
object. To use the sstate function for computing both the steady-state levels and steady-state
growth rates in a balanced-growth model, you need to set the option ’growth=’ true.

Lower and upper bounds

Use options ’levelBounds=’ and ’growthBounds=’ to impose lower and/or upper bounds on steady-
state levels and/or growth rates of selected variables. Create a struct with a 1-by-2 vector [lowerBnd,upperBnd]
for each variable that is supposed to be bounded when the steady state is being calculated, and
pass the struct into the respective option. User -Inf or Inf if only one of the bounds is specified.
For instance, the following piece of code

bnd = struct();

bnd.X = [0,10];

bnd.Y = [-Inf,20];

bnd.Z = [5,Inf];

148

Models (model Objects): sstatedb

specifies lower bounds for variables X and Z, and upper bounds for variables X and Y. The variables
that are not bounded do not need to be included in the struct.

Example

sstatedb
Create model-specific steady-state or balanced-growth-path database

Syntax

Input arguments marked with a ~ (tilde) sign may be omitted.

[D,IsDev] = sstatedb(M,Range,~NCol,...)

Input arguments

• M [model] - Model object for which the sstate database will be created.

• Range [numeric] - Intended simulation range; the steady-state or balanced-growth-path
database will be created on a range that also automatically includes all the necessary lags.

• ~NCol [numeric | 1] - Number of columns created in the time series object for each variable;
the input argument NCol can be only used on models with one parameterisation; may be
omitted.

Options

• ’randFunc=’ [@lhsnorm | @randn | @zeros] - Function used to generate random draws for shock
time series; if @zeros, the shocks will simply be filled with zeros; the random numbers will be
adjusted by the respective covariance matrix implied by the current model parameterization.

Output arguments

• D [struct] - Database with a steady-state or balanced-growth path tseries object for each
model variable, and a scalar or vector of the currently assigned values for each model param-
eter.

149

Models (model Objects): sstatefile

• IsDev [false] - The second output argument is always false, and can be used to set the
option ’deviation=’ in model/simulate P137 .

Description

Example

sstatefile
Create a steady-state file based on the model object’s steady-state equations

Syntax

sstatefile(m,filename,...)

Input arguments

• m [model] - Model object.

• file [char] - Filename under which the steady-state file will be saved.

Options

• ’endogenise=’ [cellstr | char | empty] - List of parameters that will be endogenised when
computing the steady state; the number of endogenised parameters must match the number
of transtion variables exogenised in the ’exogenised=’ option.

• ’endogenise=’ [cellstr | char | empty] - List of transition variables that will be exogenised
when computing the steady state; the number of exogenised variables must match the number
of parameters exogenised in the ’exogenise=’ option.

• ’growthNames=’ [char | ’d?’] - Template for growth names used in evaluating lags and leads.

• ’time=’ [true | false] - Keep or remove time subscripts (curly braces) in the steady-state
file.

150

Models (model Objects): subsasgn

Description

Example

stdscale
Rescale all std deviations by the same factor

Syntax

This = stdscale(This,Factor)

Input arguments

• This [model] - Model object whose std deviations will be rescaled.

• Factor [numeric] - Factor by which all std deviations in the model object This will be
rescaled.

Output arguments

• This [model] - Model object with all of std deviations rescaled.

Description

Example

subsasgn
Subscripted assignment for model and systemfit objects

Syntax for assigning parameterisations from other object

M(Inx) = N

151

Models (model Objects): subsasgn

Syntax for deleting specified parameterisations

M(Inx) = []

Syntax for assigning parameter values or steady-state values

M.Name = X

M(Inx).Name = X

M.Name(Inx) = X

Syntax for assigning std deviations or cross-correlations of shocks

M.std_Name = X

M.corr_Name1__Name2 = X

Note that a double underscore is used to separate the Names of shocks in correlation coefficients.

Input arguments

• M [model | systemfit] - Model or systemfit object that will be assigned new parameterisations
or new parameter values or new steady-state values.

• N [model | systemfit] - Model or systemfit object compatible with M whose parameterisations
will be assigned (copied) into M.

• Inx [numeric] - Inx of parameterisations that will be assigned or deleted.

• Name, Name1, Name2 [char] - Name of a variable, shock, or parameter.

• X [numeric] - A value (or a vector of values) that will be assigned to a parameter or variable
Named Name.

Output arguments

• M [model | systemfit] - Model or systemfit object with newly assigned or deleted parameter-
isations, or with newly assigned parameters, or steady-state values.

152

Models (model Objects): subsref

Description

Example

Expand the number of parameterisations in a model or systemfit object that has initially just one
parameterisation:

m(1:10) = m;

The parameterisation is simply copied ten times within the model or systemfit object.

subsref
Subscripted reference for model and systemfit objects

Syntax for retrieving object with subset of parameterisations

M(Inx)

Syntax for retrieving parameters or steady-state values

M.Name

Syntax to retrieve a std deviation or a cross-correlation of shocks

M.std_ShockName

M.corr_ShockName1__ShockName2

Note that a double underscore is used to separate the names of shocks in correlation coefficients.

Input arguments

• M [model | systemfit] - Model or systemfit object.

• Inx [numeric | logical] - Inx of requested parameterisations.

• Name - Name of a variable, shock, or parameter.

• ShockName1, ShockName2 - Name of a shock.

153

Models (model Objects): system

Description

Example

system
System matrices for unsolved model

Syntax

[A,B,C,D,F,G,H,J,List,Nf] = system(M)

Input arguments

• M [model] - Model object whose system matrices will be returned.

Output arguments

• A, B, C, D, F, G, H ,J [numeric] - Matrices describing the unsolved system, see Description.

• List [cell] - Lists of measurement variables, transition variables includint their auxiliary lags
and leads, and shocks as they appear in the rows and columns of the system matrices.

• Nf [numeric] - Number of non-predetermined (forward-looking) transition variables (multi-
plied by the first Nf columns of matrices A and B).

Options

• ’linear=’ [@auto | true | false] - Compute the model using a linear approach, i.e. differ-
entiating around zero and not the currently assigned steady state.

• ’select=’ [true | false] - Automatically detect which equations need to be re-differentiated
based on parameter changes from the last time the system matrices were calculated.

• ’sparse=’ [true | false] - Return matrices A, B, D, F, G, and J as sparse matrices; can be
set to true only in models with one parameterization.

154

Models (model Objects): unlock

Description

The system before the model is solved has the following form:

A E[xf;xb] + B [xf(-1);xb(-1)] + C + D e = 0

F y + G xb + H + J e = 0

where E is a conditional expectations operator, xf is a vector of non-predetermined (forward-looking)
transition variables, xb is a vector of predetermined (backward-looking) transition variables, y is a
vector of measurement variables, and e is a vector of transition and measurement shocks.

Example

templatedb
Create model-specific template database

Syntax

D = templatedb(M)

Input arguments

• M [model] - Model object for which the empty template database will be created.

Output arguments

• D [struct] - Empty database with a field for each of the model variables, shocks, and param-
eters.

Description

Example

155

Models (model Objects): userdata

unlock
Unlock (enable) locked dynamic links or sstate update equations

Syntax

M = unlock(M,’!links’)

M = unlock(M,’!links’,Name1,Name2,...);

M = unlock(M,’!sstate_update’);

M = unlock(M,’!sstate_update’,Name1,Name2,...);

Input arguments

• M [model] - Model object.

• Name1, Name2 [char] - List of names whose links or sstate update equations will be unlocked.

Output arguments

• M [model] - Model object with dynamic links !links P37 or steady-state update equations
!sstate_update P?? enabled.

Example

userdata
Get or set user data in an IRIS object

Syntax for getting user data

X = userdata(Obj)

Syntax for assigning user data

OBJ = userdata(Obj,X)

156

Models (model Objects): VAR

Input arguments

• Obj [model | tseries | VAR | SVAR | FAVAR] - One of the IRIS objects with access to user
data functions.

• X [. . .] - Any kind of data that will be attached to, and stored within, the object OBJ.

Output arguments

• X [. . .] - User data that are currently attached to the object.

• Obj [model | tseries | VAR | SVAR | FAVAR] - The object with its user data updated.

Description

Example

VAR
Population VAR for selected model variables

Syntax

V = VAR(M,List,Range,...)

Input arguments

• M [model] - Solved model object.

• List [cellstr | char] - List of variables selected for the VAR.

• Range [numeric | char] - Hypothetical range, including pre-sample initial condition, on which
the VAR would be estimated.

Output arguments

• V [VAR] - Asymptotic reduced-form VAR for selected model variables.

157

Models (model Objects): vma

Options

• ’order=’ [numeric | 1] - Order of the VAR.

• ’constant=’ [true | false] - Include in the VAR a constant vector derived from the steady
state of the selected variables.

Description

Example

vma
Vector moving average representation of the model

Syntax

[Phi,List] = vma(M,P,...)

Input arguments

• M [model] - Model object for which the VMA representation will be computed.

• P [numeric] - Order up to which the VMA will be evaluated.

Output arguments

• Phi [namedmat | numeric] - VMA matrices.

• List [cell] - List of measurement and transition variables in the rows of the Phi matrix, and
list of shocks in the columns of the Phi matrix.

Option

• ’matrixFmt=’ [’namedmat’ | ’plain’] - Return matrix Phi as either a namedmat P205 object
(i.e. matrix with named rows and columns) or a plain numeric array.

• ’select=’ [@all | char | cellstr] - Return VMA for selected variables only; @all means all
variables.

158

Models (model Objects): xsf

Description

Example

xsf
Power spectrum and spectral density of model variables

Syntax

[S,D,List] = xsf(M,Freq,...)

[S,D,List,Freq] = xsf(M,NFreq,...)

Input arguments

• M [model] - Model object.

• Freq [numeric] - Vector of frequencies at which the XSFs will be evaluated.

• NFreq [numeric] - Total number of requested frequencies; the frequencies will be evenly
spread between 0 and pi.

Output arguments

• S [namedmat | numeric] - Power spectrum matrices.

• D [namedmat | numeric] - Spectral density matrices.

• List [cellstr] - List of variable in order of appearance in rows and columns of S and D.

• Freq [numeric] - Vector of frequencies at which the XSFs has been evaluated.

Options

• ’applyTo=’ [cellstr | char | @all] - List of variables to which the option ’filter=’ will be
applied; @all means all variables.

• ’filter=’ [char | empty] - Linear filter that is applied to variables specified by ‘applyto’.

• ’nFreq=’ [numeric | 256] - Number of equally spaced frequencies over which the ‘filter’ is
numerically integrated.

159

Models (model Objects): zerodb

• ’matrixFmt=’ [’namedmat’ | ’plain’] - Return matrices S and D as either namedmat P205

objects (i.e. matrices with named rows and columns) or plain numeric arrays.

• ’progress=’ [true | false] - Display progress bar on in the command window.

• ’select=’ [@all | char | cellstr] - Return XSF for selected variables only; @all means all
variables.

Description

Example

zerodb
Create model-specific zero-deviation database

Syntax

Input arguments marked with a ~ (tilde) sign may be omitted.

[D,IsDev] = zerodb(M,Range,~NCol,...)

Input arguments

• M [model] - Model object for which the zero database will be created.

• Range [numeric] - Intended simulation range; the zero database will be created on a range
that also automatically includes all the necessary lags.

• ~NCol [numeric | 1] - Number of columns created in the time series object for each variable;
the input argument NCol can be only used on models with one parameterisation; may be
omitted.

Option

• ’randFunc=’ [@lhsnorm | @randn | @zeros] - Function used to generate random draws for shock
time series; if @zeros, the shocks will simply be filled with zeros; the random numbers will be
adjusted by the respective covariance matrix implied by the current model parameterization.

160

Models (model Objects): zerodb

Output arguments

• D [struct] - Database with a tseries object filled with zeros for each linearised variable, a
tseries object filled with ones for each log-linearised variables, and a scalar or vector of the
currently assigned values for each model parameter.

• IsDev [true] - The second output argument is always true, and can be used to set the option
’deviation=’ in model/simulate P137 .

Description

Example

161

Reporting Equations (rpteq Objects): reporting

6 Reporting Equations (rpteq Objects)

Reporting equations (rpteq) objects are systems of equations evaluated successively (i.e. not simul-
taneously) equation by equation, period by period.

There are three basic ways to create reporting equations objects:

• in the !reporting_equations P?? section of a model file;

• in a separate reporting equations file;

• on the fly within an m-file or in the command window.

Rpteq methods:

Constructor

• rpteq P163 - New reporting equations (rpteq) object.

Evaluating reporting equations

• run P164 - Evaluate reporting equations (rpteq) object.

Evaluating reporting equations from within model object

• reporting P128 - Evaluate reporting equations from within model object.

Getting on-line help on rpteq functions

help rpteq

help rpteq/function_name

reporting
Evaluate reporting equations from within model object

Syntax

D = reporting(M,D,Range,...)

162

Reporting Equations (rpteq Objects): rpteq

Input arguments

• M [model] - Model object with reporting equations.

• D [struct] - Input database that will be used to evaluate the reporting equations.

• Range [numeric | char] - Date range on which the reporting equations will be evaluated.

Output arguments

• D [struct] - Output database with reporting variables.

Options

See rpteq/run P164 for options available.

Description

rpteq
New reporting equations (rpteq) object

Syntax

Q = rpteq(FName)

Q = rpteq(Eqtn)

Input arguments

• FName [char | cellstr] - File name or cellstr array of file names, each a plain text file with
reporting equations; multiple input files will be combined together.

• Eqtn [char | cellstr] - Equation or cellstr array of equations.

Output arguments

• Q [rpteq] - New reporting equations object.

163

Reporting Equations (rpteq Objects): run

Description

Reporting equations must be written in the following form:

‘LhsName = RhsExpr;‘

‘"Label" LhsName = RhsExpr;‘

where

• LhsName is the name of a left-hand-side variable (with no lag or lead);

• RhsExpr is an expression on the right-hand side that will be evaluated period by period, and
assigned to the left-hand-side variable, LhsName.

• "Label" is an optional label that will be used to create a comment in the output time series
for the respective left-hand-side variable.

• the equation must end with a semicolon.

Example

q = rpteq({ ...

’a = c * a{-1}^0.8 * b{-1}^0.2;’, ...

’b = sqrt(b{-1});’, ...

})

q =

rpteq object

number of equations: [2]

comment: ’’

user data: empty

export files: [0]

run
Evaluate reporting equations (rpteq) object

Syntax

Outp = run(Q,Inp,Range,...)

164

Reporting Equations (rpteq Objects): run

Input arguments

• Q [char] - Reporting equations (rpteq) object.

• Inp [struct] - Input database that will be used to evaluate the reporting equations.

• Dates [numeric | char] - Dates at which the reporting equations will be evaluated; Dates
does not need to be a continuous date range.

Output arguments

• Outp [struct] - Output database with reporting variables.

Options

• ’dbOverlay=’ [true | false | struct] - If true, the LHS output data will be combined with
data from the input database (or a user-supplied database).

• ’fresh=’ [true | false] - If true, only LHS variables will be included in the output database,
Outp; if false the output database will also include all entries from the input database, Inp.

Description

Reporting equations are always evaluated non-simultaneously, i.e. equation by equation, for each
period.

Example

Note the differences in the three output databases, d1, d2, d3, depending on the options ’dbOverlay=’
and ’fresh=’.

>> q = rpteq({ ...

’a = c * a{-1}^0.8 * b{-1}^0.2;’, ...

’b = sqrt(b{-1});’, ...

})

q =

rpteq object

number of equations: [2]

comment: ’’

user data: empty

export files: [0]

165

Reporting Equations (rpteq Objects): run

>> d = struct();

>> d.a = tseries();

>> d.b = tseries();

>> d.a(qq(2009,4)) = 0.76;

>> d.b(qq(2009,4)) = 0.88;

>> d.c = 10;

>> d

d =

a: [1x1 tseries]

b: [1x1 tseries]

c: 10

>> d1 = run(q,d,qq(2010,1):qq(2011,4))

d1 =

a: [8x1 tseries]

b: [8x1 tseries]

c: 10

>> d2 = run(q,d,qq(2010,1):qq(2011,4),’dbOverlay=’,true)

d2 =

a: [9x1 tseries]

b: [9x1 tseries]

c: 10

>> d3 = run(q,d,qq(2010,1):qq(2011,4),’fresh=’,true)

d3 =

a: [8x1 tseries]

b: [8x1 tseries]

166

Model Simulation Plans (plan Objects)

7 Model Simulation Plans (plan Objects)

Simulation plans complement the use of the model/simulate P137 or model/jforecast P114 func-
tions.

You need to use a simulation plan object to set up the following types of more complex simulations
or forecasts (or a combination of these):

simulations or forecasts with some of the model variables temporarily

exogenised;

simulations with some of the non-linear equations solved in an exact

non-linear mode;

forecasts conditioned upon some variables;

The plan object is passed to the model/simulate P137 or model/jforecast P114 functions through
the ’plan=’ option.

Plan methods:

Constructor

• plan P175 - Create new empty simulation plan object.

Getting information about simulation plans

• detail P169 - Display details of a simulation plan.
• get P172 - Query to plan object.
• nnzcond P173 - Number of conditioning data points.
• nnzendog P174 - Number of endogenised data points.
• nnzexog P174 - Number of exogenised data points.

Setting up simulation plans

• autoexogenise P168 - Exogenise variables and automatically endogenise corresponding shocks.
• condition P169 - Condition forecast upon the specified variables at the specified dates.
• endogenise P171 - Endogenise shocks or re-endogenise variables at the specified dates.

167

Model Simulation Plans (plan Objects): autoexogenise

• exogenise P171 - Exogenise variables or re-exogenise shocks at the specified dates.
• reset P170 - Remove all endogenized, exogenized, autoexogenized and conditioned upon
data points from simulation plan.

• swap P177 - Swap endogeneity and exogeneity of variables and shocks.

Referencing plan objects

• subsref P176 - Subscripted reference for plan objects.

Getting on-line help on simulation plans

help plan

help plan/function_name

autoexogenise
Exogenise variables and automatically endogenise corresponding shocks

Syntax

P = autoexogenise(P,List,Dates)

P = autoexogenise(P,List,Dates,Sigma)

Input arguments

• P [plan] - Simulation plan.

• List [cellstr | char | @all] - List of variables that will be exogenised; these variables must have
their corresponding shocks assigned, see !autoexogenise P27 ; @all means all autoexogenised
variables defined in the model object will be exogenised.

• Dates [numeric] - Dates at which the variables will be exogenised.

• Sigma [1 | 1i | numeric] - Anticipation mode (real or imaginary) for endogenized shocks, and
their numerical weight (used in underdetermined simulation plans); if omitted, Sigma = 1.

Output arguments

• P [plan] - Simulation plan with new information on exogenised variables and endogenised
shocks included.

168

Model Simulation Plans (plan Objects): detail

Description

Example

condition
Condition forecast upon the specified variables at the specified dates

Syntax

P = condition(P,List,Dates)

Input arguments

• P [plan] - Simulation plan.

• List [cellstr | char] - List of variables upon which a forecast will be conditioned.

• Dates [numeric] - Dates at which the forecast will be conditioned upon the specified variables.

Output arguments

• P [plan] - Simulation plan with new conditioning information included.

Description

Example

detail
Display details of a simulation plan

Syntax

detail(P)

detail(P,Data)

169

Model Simulation Plans (plan Objects): endogenise

Input arguments

• P [plan] - Simulation plan.

• Data [struct] - Input database.

Description

If you supply also the second input argument, the input database D, both the dates and the re-
spective values will be reported for exogenised and conditioning data points, and the values will be
checked for the presence of NaNs (with a warning should there be found any).

Example

endogenise
Remove all endogenized, exogenized, autoexogenized and conditioned upon data
points from simulation plan

Syntax

P = reset(P)

Input arguments

• P [plan] - Simulation plan.

Output arguments

• P [plan] - Simulation plan with all endogenized, exogenized, autoexogenized and conditioned
upon data points removed.

Description

Example

170

Model Simulation Plans (plan Objects): exogenise

endogenise
Endogenise shocks or re-endogenise variables at the specified dates

Syntax

P = endogenise(P,List,Dates)

P = endogenise(P,Dates,List)

P = endogenise(P,List,Dates,Sigma)

P = endogenise(P,Dates,List,Sigma)

Input arguments

• P [plan] - Simulation plan.

• List [cellstr | char] - List of shocks that will be endogenised, or list of variables that will be
re-endogenise.

• Dates [numeric] - Dates at which the shocks or variables will be endogenised.

• Sigma [1 | 1i | numeric] - Anticipation mode (real or imaginary) for endogenized shocks, and
their numerical weight (used in underdetermined simulation plans); if omitted, Sigma = 1.

Output arguments

• P [plan] - Simulation plan with new information on endogenised shocks included.

Description

Example

exogenise
Exogenise variables or re-exogenise shocks at the specified dates

Syntax

P = exogenise(P,List,Dates)

P = exogenise(P,Dates,List)

171

Model Simulation Plans (plan Objects): get

P = exogenise(P,List,Dates,Sigma)

P = exogenise(P,Dates,List,Sigma)

Input arguments

• P [plan] - Simulation plan.

• List [cellstr | char] - List of variables that will be exogenised, or list of shocks that will be
re-exogenised.

• Dates [numeric] - Dates at which the variables will be exogenised.

• Sigma [1 | 1i] - Only when re-exogenising shocks: Select the anticipation mode in which the
shock will be re-exogenised; if omitted, Sigma = 1.

Output arguments

• P [plan] - Simulation plan with new information on exogenised variables included.

Description

Example

get
Query to plan object

Syntax

Ans = get(P,Query)

[Ans,Ans,...] = get(P,Query,Query,...)

Input arguments

• P [plan] - Simulation plan object.

• Query [char] - Name of the queried property.

172

Model Simulation Plans (plan Objects): nnzcond

Output arguments

• Ans [. . .] - Answer.

Valid queries to plan objects

• ’endogenised=’ – Returns [struct] a database with time series for each shock with 1 in
each period where the variable is endogenised, and 0 in each period where the variable is not
endogenised.

• ’exogenised=’ – Returns [struct] a database with time series for each measurement and
transition variable with 1 in each period where the variable is exogenised, and 0 in each
period where the variable is not exogenised.

• ’onlyEndogenised=’ – Returns [struct] the same database as ’endogenised=’ but including
only those shocks that are endogenised at least in one period.

• ’onlyExogenised=’ – Returns [struct] the same database as ’exogenised=’ but including
only those measurement and transition variables that are endogenised at least in one period.

• ’range=’ – Returns [numeric] the simulation plan range.

Description

Example

nnzcond
Number of conditioning data points

Syntax

N = nnzcond(P)

Input arguments

• P [plan] - Simulation plan.

173

Model Simulation Plans (plan Objects): nnzexog

Output arguments

• N [numeric] - Number of conditioning data points; each variable at each date counts as one
data point.

Description

Example

nnzendog
Number of endogenised data points

Syntax

[N,NReal,NImag] = nnzendog(P)

Input arguments

• P [plan] - Simulation plan.

Output arguments

• N [numeric] - Total number of endogenised data points; each shock at each time counts as
one data point.

• NRea, [numeric] - Number of endogenised data points with anticipation mode 1.

• NImag [numeric] - Number of endogenised data points with anticipation mode 1i.

Description

Example

nnzexog
Number of exogenised data points

174

Model Simulation Plans (plan Objects): plan

Syntax

N = nnzexog(P)

Input arguments

• P [plan] - Simulation plan.

Output arguments

• N [numeric] - Number of exogenised data points; each variable at each date counts as one
data point.

Description

Example

plan
Create new empty simulation plan object

Syntax

P = plan(M,Range)

Input arguments

• M [model] - Model object that will be simulated subject to this simulation plan.

• Range [numeric | char] - Simulation range; this range must exactly correspond to the range
on which the model will be simulated.

Output arguments

• P [plan] - New empty simulation plan.

175

Model Simulation Plans (plan Objects): subsref

Description

You need to use a simulation plan object to set up the following types of more complex simulations
or forecats:

• simulations or forecasts with some of the model variables temporarily exogenised;

• simulations with some of the non-linear equations solved exactly.

• forecasts conditioned upon some variables;

The plan object is passed to the simulate P137 or jforecast P114 functions through the option
’plan=’.

Example

subsref
Subscripted reference for plan objects

Syntax

P = P(StartDate:EndDate)

P = P{Shift}

Input arguments

• P [plan] - Simulation plan.

Output aguments

• P [plan] - Simulation plan reduced, expanded, or shifted to the new range,

• StartDate [numeric] - New start date for the simulation plan.

• EndDate [numeric] - New end date for the simulation plan.

• Shift [numeric] - Lag or lead by which the simulation plan range will be shifted.

176

Model Simulation Plans (plan Objects): swap

Description

Example

swap
Swap endogeneity and exogeneity of variables and shocks

Syntax

P = swap(P,ExogList,EndogList,Dates)

P = swap(P,ExogList,EndogList,Dates,Sigma)

Input arguments

• P [plan] - Simulation plan.

• ExogList [cellstr | char] - List of variables that will be exogenized.

• EndogList [cellstr | char] - List of shocks that will be endogenized.

• Dates [numeric] - Dates at which the variables and shocks will be exogenized/endogenized.

• Sigma [numeric] - Anticipation mode (real or imaginary) for the endogenized shocks, and
their numerical weight (used in underdetermined simulation plans); if omitted, Sigma = 1.

Output arguments

• P [plan] - Simulation plan with new information on exogenized variables and endogenized
shocks included.

Description

The function swap is equivalent to the following separate calls to functions exogenize and endogenize:

p = exogenize(p,ExogList,Dates);

p = endogenize(p,EndogList,Dates);

or

177

Model Simulation Plans (plan Objects): swap

p = exogenize(p,ExogList,Dates);

p = endogenize(p,EndogList,Dates,Sigma);

if the input argument Sigma is provided.

Example

178

Grouping and Aggregation of Contributions (grouping Objects): addgroup

8 Grouping and Aggregation of Contributions (grouping
Objects)

Grouping objects can be used for aggregating the contributions of shocks in model simulations,
model/simulate P137 , or aggregating the contributions of measurement variables in Kalman fil-
tering, model/filter P93 .

Grouping methods:

Constructor

• grouping P181 - Create new empty grouping object.

Getting information about groups

• detail P180 - Details of a grouping object.
• isempty P182 - True for empty grouping object.

Setting up and using groups

• addgroup P179 - Add measurement variable group or shock group to grouping object.
• eval P180 - Evaluate contributions in input database S using grouping object G.

Getting on-line help on groups

help grouping

help grouping/function_name

addgroup
Add measurement variable group or shock group to grouping object

Syntax

G = addgroup(G,GroupName,GroupContents)

179

Grouping and Aggregation of Contributions (grouping Objects): eval

Input arguments

• G [grouping] - Grouping object.

• GroupName [char] - Group name.

• GroupContents [char | cell | Inf] - Names of shocks or measurement variables to be included
in the new group; GroupContents can also be regular expressions; Inf the group will contain
all shocks or measurement variables not included in any existing group.

Output arguments

• G [grouping] - Grouping object with the new group.

Description

Example

detail
Details of a grouping object

Syntax

detail(G)

Input arguments

• G [grouping] - Grouping object.

Description

Example

eval
Evaluate contributions in input database S using grouping object G

180

Grouping and Aggregation of Contributions (grouping Objects): grouping

Syntax

[S,L] = eval(G,S)

Input arguments

• G [grouping] - Grouping object.

• S [dbase] - Input dabase with individual contributions.

Output arguments

• S [dbase] - Output database with grouped contributions.

• L [cellstr] - Legend entries based on the list of group names.

Options

• ’append=’ [true | false] - Append in the output database all remaining data columns from
the input database that do not correspond to any contribution of shocks or measurement
variables.

Description

Example

For a model object M, database D and simulation range R,

S = simulate(M,D,R,’contributions=’,true) ;

G = grouping(M)

...

G = addgroup(G,GroupName,GroupContents) ;

...

S = eval(S,G)

grouping
Create new empty grouping object

181

Grouping and Aggregation of Contributions (grouping Objects): isempty

Syntax

G = grouping(M,Type)

Input arguments

• M [model] - Model object.

• Type [’shock’ | ’measurement’] - Type of grouping object.

Output arguments

• G [grouping] - New empty grouping object.

Description

Example

isempty
True for empty grouping object

Syntax

Flag = isempty(G)

Input arguments

• G [grouping] - Grouping object.

Output arguments

• Flag [true | false] - True if G is an empty grouping object.

182

Grouping and Aggregation of Contributions (grouping Objects): isempty

Description

Example

g = grouping();

isempty(g)

ans =

1

183

System Priors (systempriors Objects): detail

9 System Priors (systempriors Objects)

System priors are priors imposed on the system properties of a model as whole, such as shock
response functions, frequency response functions, correlations, or spectral densities; moreover, sys-
tempriors objects also allow for priors on combinations of parameters. The system priors can be
combined with priors on individual parameters.

Systempriors methods:

Constructor

• systempriors P188 - Create new empty system priors object.

Setting up priors

• prior P186 - Add new prior to system priors object.

Getting information about system priors

• detail P184 - Display details of system priors object.
• isempty P185 - True if system priors object is empty.
• length P185 - Number or priors in system priors object.

detail
Display details of system priors object

Syntax

detail(S)

Input arguments

• S [systempriors] - System priors, systempriors P184 object.

184

System Priors (systempriors Objects): length

Description

Example

isempty
True if system priors object is empty

Syntax

Flag = isempty(S)

Input arguments

• S [systempriors] - System priors, systempriors P184 , object.

Output arguments

• Flag [true | false] - True if the system priors object, S, is empty, false otherwise.

Description

Example

length
Number or priors in system priors object

Syntax

N = length(S)

Input arguments

• S [systempriors] - System priors, systempriors P184 object.

185

System Priors (systempriors Objects): prior

Output arguments

• N [numeric] - Number of priors imposed in the system priors object, S.

Description

Example

prior
Add new prior to system priors object

Syntax

S = prior(S,Expr,PriorFn,...)

S = prior(S,Expr,[],...)

Input arguments

• S [systempriors] - System priors object.

• Expr [char] - Expression that defines a value for which a prior density will be defined; see
Description for system properties that can be referred to in the expression.

• PriorFn [function_handle | empty] - Function handle returning the log of prior density;
empty prior function, [], means a uniform prior.

Output arguments

• S [systempriors] - The system priors object with the new prior added.

Options

• ’lowerBound=’ [numeric | -Inf] - Lower bound for the prior.

• ’upperBound=’ [numeric | Inf] - Upper bound for the prior.

186

System Priors (systempriors Objects): prior

Description

System properties that can be used in Expr

• srf[VarName,ShockName,T] - Plain shock response function of variables VarName to shock
ShockName in period T. Mind the square brackets.

• ffrf[VarName,MVarName,Freq] - Filter frequency response function of transition variables
TVarName to measurement variable MVarName at frequency Freq. Mind the square brackets.

• corr[VarName1,VarName2,Lag] - Correlation between variable VarName1 and variables VarName2
lagged by Lag periods.

• spd[VarName1,VarName2,Freq] - Spectral density between variables VarName1 and VarName2

at frequency Freq.

If a variable is declared as a log variable P38 , it must be referred to as log(VarName) in the
above expressions, and the log of that variables is returned, e.g. srf[log(VarName),ShockName,T].
or ffrf[log(TVarName),MVarName,T].

Expressions involving combinations or functions of parameters

Model parameter names can be referred to in Expr preceded by a dot (period), e.g. .alphaˆ2 +

.betaˆ2 defines a prior on the sum of squares of the two parameters (alpha and beta).

Example

Create a new empty systemprios object based on an existing model.

s = systempriors(m);

Add a prior on minus the shock response function of variable ygap to shock eps in period 4. The
prior density is lognormal with mean 0.3 and std deviation 0.05;

s = prior(s,’-srf[ygap,eps,4]’,logdist.lognormal(0.3,0.05));

Add a prior on the gain of the frequency response function of transition variable ygap to measure-
ment variable ‘y’ at frequency 2*pi/40. The prior density is normal with mean 0.5 and std deviation
0.01. This prior says that we wish to keep the cut-off periodicity for trend-cycle decomposition
close to 40 periods.

s = prior(s,’abs(ffrf[ygap,y,2*pi/40])’,logdist.normal(0.5,0.01));

187

System Priors (systempriors Objects): systempriors

Add a prior on the sum of parameters alpha1 and alpha2. The prior is normal with mean 0.9
and std deviation 0.1, but the sum is forced to be between 0 and 1 by imposing lower and upper
bounds.

s = prior(s,’.alpha1 + .alpha2’,logdist.normal(0.9,0.1), ...

’lowerBound=’,0,’upperBound=’,1);

Add a prior saying that the first 16 periods account for at least 90% of total variability (cyclicality)
in a 40-period response of ygap to shock eps. This prior is meant to suppress secondary cycles in
shock response functions.

s = prior(s, ...

’sum(abs(srf[ygap,eps,1:16])) / sum(abs(srf[ygap,eps,1:40]))’, ...

[],’lowerBound=’,0.9);

systempriors
Create new empty system priors object

Syntax

S = systempriors(M)

Input arguments

• M [model] - Model object on whose system properties the priors will be imposed.

Output arguments

• S [systempriors] - New empty system priors object.

Description

Example

188

Posterior Simulator (poster Objects): arwm

10 Posterior Simulator (poster Objects)

Posterior simulator objects allow evaluating the behaviour of the posterior dsitribution, and drawing
model parameters from the posterior distibution.

Posterior objects are set up within the model/estimate P83 function and returned as the second
output argument - the set up and initialisation of the posterior object is fully automated in this case.
Alternatively, you can set up a posterior object manually, by setting all its properties appropriately.

Poster methods:

Constructor

• poster P193 - Create new empty posterior simulation (poster) object.

Evaluating posterior density

• arwm P189 - Adaptive random-walk Metropolis posterior simulator.
• eval P192 - Evaluate posterior density at specified points.
• regen P193 - Regeneration time MCMC Metropolis posterior simulator.

Chain statistics

• stats P194 - Evaluate selected statistics of ARWM chain.

Getting on-line help on model functions

help poster

help poster/function_name

arwm
Adaptive random-walk Metropolis posterior simulator

Syntax

[Theta,LogPost,ArVec,PosUpd] = arwm(Pos,NDraw,...)

[Theta,LogPost,ArVec,PosUpd,SgmVec,FinalCov] = arwm(Pos,NDraw,...)

189

Posterior Simulator (poster Objects): arwm

Input arguments

• Pos [poster] - Initialised posterior simulator object.

• NDraw [numeric] - Length of the chain not including burn-in.

Output arguments

• Theta [numeric] - MCMC chain with individual parameters in rows.

• LogPost [numeric] - Vector of log posterior density (up to a constant) in each draw.

• ArVec [numeric] - Vector of cumulative acceptance ratios.

• PosUpd [poster] - Posterior simulator object with its properties updated so to capture the
final state of the simulation.

• SgmVec [numeric] - Vector of proposal scale factors in each draw.

• FinalCov [numeric] - Final proposal covariance matrix; the final covariance matrix of the
random walk step is Scale(end)ˆ2*FinalCov.

Options

• ’adaptProposalCov=’ [numeric | 0.5] - Speed of adaptation of the Cholesky factor of the
proposal covariance matrix towards the target acceptanace ratio, targetAR; zero means no
adaptation.

• ’adaptScale=’ [numeric | 1] - Speed of adaptation of the scale factor to deviations of
acceptance ratios from the target ratio, targetAR.

• ’burnin=’ [numeric | 0.10] - Number of burn-in draws entered either as a percentage of
total draws (between 0 and 1) or directly as a number (integer greater that one). Burn-in
draws will be added to the requested number of draws ndraw and discarded after the posterior
simulation.

• ’estTime=’ [true | false] - Display and update the estimated time to go in the command
window.

• ’firstPrefetch=’ [numeric | Inf] - First draw where parallelised pre-fetching will be used;
Inf means no pre-fetching.

• ’gamma=’ [numeric | 0.8] - The rate of decay at which the scale and/or the proposal covariance
will be adapted with each new draw.

• ’initScale=’ [numeric | 1/3] - Initial scale factor by which the initial proposal covariance
will be multiplied; the initial value will be adapted to achieve the target acceptance ratio.

190

Posterior Simulator (poster Objects): arwm

• ’lastAdapt=’ [numeric | Inf] - Last point at which the proposal covariance will be adapted;
Inf means adaptation will continue until the last draw. Can also be entered as a percentage
of total draws (a number strictly between 0 and 1).

• ’nStep=’ [numeric | *1] - Number of pre-fetched steps computed in parallel; only works with
firstPrefetch= smaller than NDraw.

• ’progress=’ [true | false] - Display progress bar in the command window.

• ’saveAs=’ [char | empty] - File name where results will be saved when the option ’saveEvery=’

is used.

• ’saveEvery=’ [numeric | Inf] - Every N draws will be saved to an HDF5 file, and removed
from workspace immediately; no values will be returned in the output arguments Theta,
LogPost, AR, Scale; the option ’saveAs=’ must be used to specify the file name; Inf means
a normal run with no saving.

• ’targetAR=’ [numeric | 0.234] - Target acceptance ratio.

Description

The function poster/arwm returns the simulated chain of parameters and the corresponding value
of the log posterior density. To obtain simulated sample statistics for each parameter (such as
posterior mean, median, percentiles, etc.) use the function poster/stats P194 to process the
simulated chain and calculate the statistics.

The properties of the posterior object returned as the 4th output argument are updated so that
they capture the final state of the posterior simulations. This can be used to initialize a next
simulation at the point where the previous ended.

Parallelised ARWM

Set ’nStep=’ greater than 1, and ’firstPrefetch=’ smaller than NDraw to start a pre-fetching
parallelised algorithm (pre-fetched will be all draws starting from ’firstPrefetch=’); to that end,
a pool of parallel workers (using e.g. matlabpool from the Parallel Computing Toolbox) must be
opened before calling arwm.

With pre-fetching, all possible paths ’nStep=’ steps ahead (i.e. all possible combinations of re-
ject/accept) are pre-evaluated in parallel, and then the resulting path is selected. Adapation then
occurs only every ’nStep=’ steps, and hence the results will always somewhat differ from a se-
rial run. Identical results can be obtained by turning down adaptation before pre-fetching starts,
i.e. by setting ’lastAdapt=’ smaller than ’firstPrefetch=’ (and, obviously, by re-setting the
random number generator).

191

Posterior Simulator (poster Objects): eval

References

• Brockwell, A.E., 2005. “Parallel Markov Chain Monte Carlo Simulation by Pre-Fetching,”
CMU Statistics Dept. Tech. Report 802.

• Strid, I., 2009. “Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching
approach,” SSE/EFI Working Paper Series in Economics and Finance No. 706.

Example

eval
Evaluate posterior density at specified points

Syntax

[X,L,PP,SrfP,FrfP] = eval(Pos)

[X,L,PP,SrfP,FrfP] = eval(Pos,P)

Input arguments

• Pos [poster] - Posterior object returned by the model/estimate P83 function.

• P [struct] - Struct with parameter values at which the posterior density will be evaluated; if
P is not specified, the posterior density is evaluated at the point of the estimated mode.

Output arguments

• X [numeric] - The value of log posterior density evaluated at P; N.B. the returned value is
log posterior, and not minus log posterior.

• L [numeric] - Contribution of data likelihood to log posterior.

• PP [numeric] - Contribution of parameter priors to log posterior.

• SrfP [numeric] - Contribution of shock response function priors to log posterior.

• FrfP [numeric] - Contribution of frequency response function priors to log posterior.

192

Posterior Simulator (poster Objects): regen

Description

The total log posterior consists, in general, of the four contributions listed above:

X = L + PP + SrfP + FrfP.

Example

poster
Create new empty posterior simulation (poster) object

Syntax

P = poster()

Description

Creating and initialising posterior simulation objects manually is unnecessary. Posterior simulation
objects are created and initialised automatically within estimation methods of various other objects,
such as model/estimate P83 .

regen
Regeneration time MCMC Metropolis posterior simulator

Syntax

[Theta,LogPost,AR,Scale,FinalCov] = regen(Pos,NDraw,...)

Input arguments

• Pos [poster] - Initialised posterior simulator object.

• NDraw [numeric] - Length of the chain not including burn-in.

193

Posterior Simulator (poster Objects): stats

Output arguments

• Theta [numeric] - MCMC chain with individual parameters in rows.

• LogPost [numeric] - Vector of log posterior density (up to a constant) in each draw.

• AR [numeric] - Vector of cumulative acceptance ratios in each draw.

• Scale [numeric] - Vector of proposal scale factors in each draw.

• FinalCov [numeric] - Final proposal covariance matrix; the final covariance matrix of the
random walk step is Scale(end)ˆ2*FinalCov.

Options

References

Brockwell, A.E., and Kadane, J.B., 2004. “Identification of Regeneration Times in
MCMC Simulation, with Application to Adaptive Schemes,” mimeo, Carnegie Mellon
University.

Example

stats
Evaluate selected statistics of ARWM chain

Syntax

S = stats(Pos,Theta,...)

S = stats(Pos,Theta,LogPost,...)

S = stats(Pos,FName,...)

Input arguments

• Pos [poster] - Posterior simulator object that has generated the Theta chain.

• Theta [numeric] - MCMC chain generated by the poster/arwm P189 function.

• LogPost [numeric] - Vector of log posterior densities generated by the arwm function; LogPost
is not necessary if you do not request ’mdd’, the marginal data density.

194

Posterior Simulator (poster Objects): stats

• FName [char] - File name under which the simulated chain was saved when poster/arwm P189

was run with options saveEvery=’ and ’saveAs=’.

Output arguments

• S [struct] - Struct with the statistics requested by the user.

Options

• ’estTime=’ [true | false] - Display and update the estimated time to go in the command
window.

• ’mddGrid=’ [numeric | 0.1:0.1:0.9] - Points between 0 and 1 over which the marginal data
density estimates will be averaged, see Geweke (1999).

• ’progress=’ [true | false] - Display progress bar in the command window.

Options to include/exclude output statistics

• ’bounds=’ [true | false] - Include in S the lower and upper parameter bounds set up by
the user.

• ’chain=’ [true | false] - Include in S the entire simulated chains of parameter values.

• ’cov=’ [true | false] - Include in S the sample covariance matrix.

• ‘hist=’ [numeric | empty] - Include in S histogram bins and counts with the specified number
of bins.

• ’hpdi=’ [false | numeric] - Include in S the highest probability density intervals with the
specified percent coverage (e.g. 90% is entered as 90, not 0.90).

• ’ksdensity=’ [true | false | numeric] - Include in S the x- and y-axis points for kernel-
smoothed posterior density; use a numeric value to control the number of points over which
the density is computed.

• ’mdd=’ [true | false] - Include in S minus the log marginal data density.

• ’mean=’ [true | false] - Include in S the sample averages.

• ’median=’ [true | false] - Include in S the sample medians.

• ’mode=’ [true | false] - Include in S the sample modes based on histograms.

• ’prctile=’ [numeric | empty] - Include in S the specified percentiles.

• ’std=’ [true | false] - Include in S the sample std deviations.

195

Posterior Simulator (poster Objects): stats

Description

Example

196

Probability Distributions (logdist Package)

11 Probability Distributions (logdist Package)

The logdist package gives quick access to basic univariate distributions, and in particular to func-
tions proportional to the logarithm of those basic distributions. Its primary use is setting up priors
in the model/estimate P83 and poster/arwm P189 functions.

The logdist package is called to create function handles that have several different modes of use.
The primary use is to compute values that are proportional to the log of the respective density.
In addition, the function handles also give you access to extra information (such as the the proper
p.d.f., the name, mean, std dev, mode, and stuctural parameters of the distribution), and to a
random number generator from the respective distribution.

Logdist methods:

Getting function handles for univariate distributions

• chisquare P199 - Create function proportional to log of Chi-Squared distribution.
• normal P201 - Create function proportional to log of Normal distribution.
• lognormal P201 - Create function proportional to log of log-normal distribution.
• beta P198 - Create function proportional to log of beta distribution.
• gamma P199 - Create function proportional to log of gamma distribution.
• invgamma P200 - Create function proportional to log of inv-gamma distribution.
• t P202 - Create function proportional to log of Student T distribution.
• uniform P203 - Create function proportional to log of uniform distribution.

Calling the logdist function handles

The function handles F created by the logdist package functions can be called the following ways:

• Get a value proportional to the log-density of the respective distribution at a particular point;
this call is used within the posterior simulator P189 :

y = F(x)

• Get the density of the respective distribution at a particular point:

y = F(x,‘pdf’)

• Get the characteristics of the distribution – mean, std deviation, mode, and information (the
inverse of the second derivative of the log density):

m = F([],‘mean’) s = F([],‘std’) o = F([],‘mode’) i = F([],‘info’)

• Get the underlying “structural” parameters of the respective distribution:

a = F([],‘a’) b = F([],‘b’)

197

Probability Distributions (logdist Package): beta

• Get the name of the distribution (the names correspond to the function names, i.e. can be
either of ’normal’, ’lognormal’, ’beta’, ’gamma’, ’invgamma’, ’uniform’):

name = F([],‘name’)

• Draw a vector or matrix of random numbers from the distribution; drawing from beta, gamma,
and inverse gamma requires the Statistics Toolbox:

a = F([],‘draw’,1,1000);

size(a) ans = 1 10000

Getting on-line help on logdist functions

help logdist

help logdist/function_name

beta
Create function proportional to log of beta distribution

Syntax

F = logdist.beta(Mean,Std)

Input arguments

• Mean [numeric] - Mean of the beta distribution.

• Std [numeric] - Std dev of the beta distribution.

Output arguments

• F [function_handle] - Function handle returning a value proportional to the log of the beta
density.

Description

See help on the logdisk package P197 for details on using the function handle F.

198

Probability Distributions (logdist Package): gamma

Example

gamma
Create function proportional to log of gamma distribution

Syntax

F = logdist.gamma(Mean,Std)

Input arguments

• Mean [numeric] - Mean of the gamma distribution.

• Std [numeric] - Std dev of the gamma distribution.

Output arguments

• F [function_handle] - Function handle returning a value proportional to the log of the
gamma density.

Description

See help on the logdisk package P197 for details on using the function handle F.

Example

gamma
Create function proportional to log of Chi-Squared distribution

Syntax

F = logdist.chisquare(Df)

199

Probability Distributions (logdist Package): invgamma

Input arguments

• Df [integer] - Degrees of freedom of Chi-squared distribution.

Output arguments

• F [function_handle] - Function handle returning a value proportional to the log of the
gamma density.

Description

See help on the logdisk package P197 for details on using the function handle F.

Example

invgamma
Create function proportional to log of inv-gamma distribution

Syntax

F = logdist.invgamma(MEAN,STD)

Input arguments

• MEAN [numeric] - Mean of the inv-gamma distribution.

• STD [numeric] - Std dev of the inv-gamma distribution.

Output arguments

• F [function_handle] - Function handle returning a value proportional to the log of the
inv-gamma density.

Description

See help on the logdisk package P197 for details on using the function handle F.

200

Probability Distributions (logdist Package): normal

Example

lognormal
Create function proportional to log of log-normal distribution

Syntax

F = logdist.lognormal(Mean,Std)

Input arguments

• Mean [numeric] - Mean of the log-normal distribution.

• Std [numeric] - Std dev of the log-normal distribution.

Output arguments

• F [function_handle] - Function handle returning a value proportional to the log of the
log-normal density.

Description

See help on the logdisk package P197 for details on using the function handle F.

Example

normal
Create function proportional to log of Normal distribution

Syntax

F = logdist.normal(Mean,Std,W)

201

Probability Distributions (logdist Package): t

Input arguments

• Mean [numeric] - Mean of the normal distribution.

• Std [numeric] - Std dev of the normal distribution.

• W [numeric] - Optional input containing mixture weights.

Multivariate cases are supported. Evaluating multiple vectors as an array of column vectors is
supported.

If the mean and standard deviation are cell arrays then the distribution will be a mixture of normals.
In this case the third argument is the vector of mixture weights.

Output arguments

• F [function_handle] - Function handle returning a value proportional to the log of Normal
density.

Description

See help on the logdisk package P197 for details on using the function handle F.

Example

t
Create function proportional to log of Student T distribution

Syntax

F = logdist.t(Mean,Std,Df)

Input arguments

• Mean [numeric] - Mean of the normal distribution.

• Std [numeric] - Std dev of the normal distribution.

202

Probability Distributions (logdist Package): uniform

• Df [integer] - Number of degrees of freedom. If finite, the distribution is Student T; if
omitted or Inf (default) the distribution is Normal.

Multivariate cases are supported. Evaluating multiple vectors as an array of column vectors is
supported.

Output arguments

• F [function_handle] - Function handle returning a value proportional to the log of Normal
or Student density.

Description

See help on the logdisk package P197 for details on using the function handle F.

Example

uniform
Create function proportional to log of uniform distribution

Syntax

F = logdist.uniform(Lo,Hi)

Input arguments

• Lo [numeric] - Lower bound of the uniform distribution.

• Hi [numeric] - Upper bound of the uniform distribution.

Output arguments

• F [function_handle] - Handle to a function returning a value that is proportional to the log
of the uniform density.

203

Probability Distributions (logdist Package): uniform

Description

See help on the logdisk package P197 for details on using the function handle F.

Example

204

Matrices with Named Rows and Columns (namedmat Objects): colnames

12 Matrices with Named Rows and Columns (namedmat
Objects)

Matrices with named rows and columns are returned as output arguments from several IRIS func-
tions, such as model/acf P67 , model/xsf P159 , or model/fmse P99 , to facilitate easy selection of
submatrices by referrring to variable names in rows and columns.

Namedmat methods:

Constructor

• namedmat P206 - Create a new matrix with named rows and columns.

Manipulating named matrices

• select P208 - Select submatrix by referring to row names and column names.
• transpose P208 - Transpose each page of matrix with names rows and columns.

Getting row and column names

• rownames P207 - Names of rows in namedmat object.
• colnames P205 - Names of columns in namedmat object.

Sample characteristics

• [cutoff](namedmat/cutoff] -

All operators and functions available for standard Matlab matrices and arrays (i.e. double objects)
are also available for namedmat objects.

colnames
Names of columns in namedmat object

Syntax

ColNames = colnames(X)

205

Matrices with Named Rows and Columns (namedmat Objects): namedmat

Input arguments

• X [namedmat] - A namedmat object (array with named rows and columns) returned as
output argument from some model functions.

Output arguments

• ColNames [cellstr] - Names of columns in X.

Description

Example

namedmat
Create a new matrix with named rows and columns

Syntax

X = namedmat(X,RowNames,ColNames)

X = namedmat(X,Names)

Input arguments

• X [numeric] - Matrix or multidimensional array.

• RowNames [cellstr] - Names for individual rows of X.

• ColNames [cellstr] - Names for individual columns of X.

• Names [cellstr] - Names for both rows and columns of X.

Output arguments

• X [namedmat] - Matrix with named rows and columns.

206

Matrices with Named Rows and Columns (namedmat Objects): select

Description

Namedmat objects are used by some of the IRIS functions to preserve the names of variables that
relate to individual rows and columns, such as in

• acf, the autocovariance and autocorrelation functions,
• xsf, the power spectrum and spectral density functions,
• fmse, the forecast mean square error fuctions,
• etc.

You can use the function select P208 to extract submatrices by referring to a selection of names.

Namedmat matrices derives from the built-in double class of objects, and hence you can use any
operators and functions on them that are available for double objects.

Example

rownames
Names of rows in namedmat object

Syntax

RowNames = rownames(X)

Input arguments

• X [namedmat] - A namedmat object (array with named rows and columns) returned as
output argument from some model functions.

Output arguments

• RowNames [cellstr] - Names of rows in X.

Description

Example

207

Matrices with Named Rows and Columns (namedmat Objects): transpose

select
Select submatrix by referring to row names and column names

Syntax

[XX,Pos] = select(X,RowSelect,ColSelect)

[XX,Pos] = select(X,Select)

Input arguments

• X [namedmat] - Matrix or array with named rows and columns.

• RowSelect [char | cellstr] - Selection of row names.

• ColSelect [char | cellstr] - Selection of column names.

• Select [char | cellstr] - Selection of names that will be applied to both rows and columns.

Output arguments

• XX [namedmat] - Submatrix with named rows and columns.

• Pos [cell] - Pos{1} is av ector of rows included in the submatrix XX, Pos{2} is a vector of

columns included in the submatrixXX‘.

Description

Example

transpose
Transpose each page of matrix with names rows and columns

Syntax

X = transpose(X)

X = X.’

208

Matrices with Named Rows and Columns (namedmat Objects): transpose

Input arguments

• X [namedmat] - Input matrix or array with named rows and columns.

Output arguments

• X [namedmat] - Transpose of the input matrix; if it is more than 2-dimensional, each page
of the matrix is transposed.

Description

Example

209

Part III —

Multivariate Time Series Analysis

210

Vector Autoregressions (VAR Objects)

13 Vector Autoregressions (VAR Objects)

VAR objects can be constructed as plain VARs or simple panel VARs (with fixed effect), and esti-
mated without or with prior dummy observations (quasi-bayesian VARs). VAR objects are reduced-
form models; they are also the point of departure for identifying structural VARs (SVAR P250

objects).

VAR methods:

Constructor

• VAR P245 - Create new empty reduced-form VAR object.

Getting information about VAR objects

• addparam P214 - Add VAR parameters to a database (struct).
• comment P217 - Get or set user comments in an IRIS object.
• companion P217 - Matrices of first-order companion VAR.
• eig P219 - Eigenvalues of a VAR process.
• fprintf P226 - Write VAR model as formatted model code to text file.
• get P226 - Query VAR object properties.
• iscompatible P232 - True if two VAR objects can occur together on the LHS and RHS in
an assignment.

• isexplosive P233 - True if any eigenvalue is outside unit circle.
• ispanel P233 - True for panel VAR objects.
• isstationary P234 - True if all eigenvalues are within unit circle.
• length P234 - Number of alternative parameterisations in VAR object.
• mean P236 - Mean of VAR process.
• nfitted P236 - Number of data points fitted in VAR estimation.
• rngcmp P239 - True if two VAR objects have been estimated using the same dates.
• sprintf P241 - Print VAR model as formatted model code.
• sspace P242 - Quasi-triangular state-space representation of VAR.
• userdata P244 - Get or set user data in an IRIS object.

Referencing VAR objects

• group P228 - Retrieve VAR object from panel VAR for specified group of data.
• subsasgn P243 - Subscripted assignment for VAR objects.
• subsref P244 - Subscripted reference for VAR objects.

211

Vector Autoregressions (VAR Objects)

Simulation, forecasting and filtering

• ferf P222 - Forecast error response function.
• filter P223 - Filter data using a VAR model.
• forecast P224 - Unconditional or conditional VAR forecasts.
• instrument P230 - Define forecast conditioning instruments in VAR models.
• resample P238 - Resample from a VAR object.
• simulate P240 - Simulate VAR model.

Manipulating VARs

• assign P215 - Manually assign system matrices to VAR object.
• alter P214 - Expand or reduce the number of alternative parameterisations within a VAR
object.

• backward P216 - Backward VAR process.
• demean P218 - Remove constant and the effect of exogenous inputs from VAR object.
• horzcat P229 - Combine two compatible VAR objects in one object with multiple parame-

terisations.
• integrate P231 - Integrate VAR process and data associated with it.
• xasymptote P247 - Set or get asymptotic assumptions for exogenous inputs.

Stochastic properties

• acf P213 - Autocovariance and autocorrelation functions for VAR variables.
• fmse P224 - Forecast mean square error matrices.
• vma P247 - Matrices describing the VMA representation of a VAR process.
• xsf P248 - Power spectrum and spectral density functions for VAR variables.

Estimation, identification, and statistical tests

• estimate P219 - Estimate a reduced-form VAR or BVAR.
• infocrit P230 - Populate information criteria for a parameterised VAR.
• lrtest P235 - Likelihood ratio test for VAR models.
• portest P237 - Portmanteau test for autocorrelation in VAR residuals.
• schur P239 - Compute and store triangular representation of VAR.

Getting on-line help on VAR functions

help VAR

help VAR/function_name

212

Vector Autoregressions (VAR Objects): addparam

acf
Autocovariance and autocorrelation functions for VAR variables

Syntax

[C,R] = acf(V,...)

Input arguments

• V [VAR] - VAR object for which the ACF will be computed.

Output arguments

• C [namedmat | numeric] - Auto/cross-covariance matrices.

• R [namedmat | numeric] - Auto/cross-correlation matrices.

Options

• ’applyTo=’ [logical | @all] - Logical index of variables to which the ’filter=’ will be
applied; @all means all variables.

• ’filter=’ [char | empty] - Linear filter that is applied to variables specified by ‘applyto’.

• ’matrixFmt=’ [’namedmat’ | ’plain’] - Return matrices C and R as either namedmat P205

objects (i.e. matrices with named rows and columns) or plain numeric arrays.

• ’nFreq=’ [numeric | 256] - Number of equally spaced frequencies over which the ’filter=’

is numerically integrated.

• ’order=’ [numeric | 0] - Order up to which ACF will be computed.

• ’progress=’ [true | false] - Display progress bar in the command window.

Description

Example

213

Vector Autoregressions (VAR Objects): alter

addparam
Add VAR parameters to a database (struct)

Syntax

D = addparam(V,D)

Input arguments

• V [VAR] - VAR object whose parameter matrices will be added to database (struct) D.

• D [struct] - Database to which the model parameters will be added.

Output arguments

• ‘D [struct] - Database with the VAR parameter matrices added.

Description

The newly created database entries are named A_ (transition matrix), K_ (constant terms), J_

(coefficient matrix in front of exogenous inputs), B_ (matrix of instantaneous whock effects), and
Cov_ (covariance matrix of shocks). Be aware that all existing database entries in D named A_, K_,
B_, or Omg_ will be overwritten.

Example

D = struct();

D = addparam(V,D);

alter
Expand or reduce the number of alternative parameterisations within a VAR object

Syntax

V = alter(V,N)

214

Vector Autoregressions (VAR Objects): assign

Input arguments

• V [VAR] - VAR object in which the number of paremeterisations will be changed.

• N [numeric] - New number of parameterisations.

Output arguments

• V [VAR] - VAR object with the new number of parameterisations.

Description

Example

assign
Manually assign system matrices to VAR object

Syntax

V = assign(V,A,K,J,Omg)

V = assign(V,A,K,J,Omg,Dates)

Input arguments

• V [VAR] - VAR object with variable names.

• A [numeric] - Transition matrices; see Description.

• K [numeric | empty] - Constant vector or matrix; if empty, the constant vector will be set to
zeros, and will not be included in the number of free parameters.

• J [numeric | empty] - Coefficient matrix in front exogenous inputs; if empty the matrix will
be set to zeros.

• Omg [numeric] - Covariance matrix of forecast errors (reduced-form residuals).

• Dates [numeric] - Vector of dates of (hypothetical) fitted observations; may be omitted.

215

Vector Autoregressions (VAR Objects): comment

Output arguments

• V [VAR] - VAR object with system matrices assigned.

Description

To assign matrices for a p-th order VAR, stack the transition matrices for individual lags horizon-
tally,

A = [A1,...,Ap]

where A1 is the coefficient matrix on the first lag, and Ap is the coefficient matrix on the last, p-th,
lag.

Example

backward
Backward VAR process

Syntax

B = backward(V)

Input arguments

• V [VAR] - VAR object.

Output arguments

• B [VAR] - VAR object with the VAR process reversed in time.

Description

Example

216

Vector Autoregressions (VAR Objects): companion

comment
Get or set user comments in an IRIS object

Syntax for getting user comments

Cmt = comment(Obj)

Syntax for assigning user comments

Obj = comment(Obj,Cmt)

Input arguments

• Obj [model | tseries | VAR | SVAR | FAVAR | sstate] - One of the IRIS objects.

• Cmt [char] - User comment that will be attached to the object.

Output arguments

• Cmt [char] - User comment that are currently attached to the object.

Description

Example

companion
Matrices of first-order companion VAR

Syntax

[A,B,K,J] = companion(V)

217

Vector Autoregressions (VAR Objects): eig

Input arguments

• V [VAR] - VAR object for which the companion matrices will be returned.

Output arguments

• A [numeric] - First-order companion transition matrix.

• B [numeric] - First-order companion coefficient matrix in front of reduced-form residuals.

• K [numeric] - First-order compnaion constant vector.

Description

Example

demean
Remove constant and the effect of exogenous inputs from VAR object

Syntax

V = demean(V)

Input arguments

• V [VAR] - VAR object.

Output arguments

• V [VAR] - VAR object with the constant vector, K, and the asymptotic assumptions for
exogenous inputs, X0, reset to zero.

Description

Example

218

Vector Autoregressions (VAR Objects): estimate

eig
Eigenvalues of a VAR process

Syntax

E = eig(V)

Input arguments

• V [VAR] - VAR object whose eigenvalues will be returned.

Output arguments

• E [numeric] - VAR eigenvalues.

Description

This function is equivalent to calling

e = get(v,’eig’)

Example

estimate
Estimate a reduced-form VAR or BVAR

Syntax

[V,VData,Fitted] = estimate(V,Inp,Range,...)

219

Vector Autoregressions (VAR Objects): estimate

Input arguments

• V [VAR] - Empty VAR object.

• Inp [struct] - Input database.

• Range [numeric] - Estimation range, including P pre-sample periods, where P is the order of
the VAR.

Output arguments

• V [VAR] - Estimated reduced-form VAR object.

• VData [struct] - Output database with the endogenous variables and the estimated residuals.

• Fitted [numeric] - Dates for which fitted values have been calculated.

Options

• ’A=’ [numeric | empty] - Restrictions on the individual values in the transition matrix, A.

• ’BVAR=’ [numeric] - Prior dummy observations for estimating a BVAR; construct the dummy
observations using the one of the BVAR functions.

• ’C=’ [numeric | empty] - Restrictions on the individual values in the constant vector, C.

• ’J=’ [numeric | empty] - Restrictions on the individual values in the coefficient matrix in
front of exogenous inputs, J.

• ’diff=’ [true | false] - Difference the series before estimating the VAR; integrate the series
back afterwards.

• ’G=’ [numeric | empty] - Restrictions on the individual values in the coefficient matrix in
front of the co-integrating vector, G.

• ’cointeg=’ [numeric | empty] - Co-integrating vectors (in rows) that will be imposed on
the estimated VAR.

• ’comment=’ [char | Inf] - Assign comment to the estimated VAR object; Inf means the
existing comment will be preserved.

• ’constraints=’ [char | cellstr] - General linear constraints on the VAR parameters.

• ’constant=’ [true | false] - Include a constant vector in the VAR.

• ’covParam=’ [true | false] - Calculate and store the covariance matrix of estimated param-
eters.

220

Vector Autoregressions (VAR Objects): estimate

• ’eqtnByEqtn=’ [true | false] - Estimate the VAR equation by equation.

• ’maxIter=’ [numeric | 1] - Maximum number of iterations when generalised least squares
algorithm is involved.

• ’mean=’ [numeric | empty] - Impose a particular asymptotic mean on the VAR process.

• ’order=’ [numeric | 1] - Order of the VAR.

• ’progress=’ [true | false] - Display progress bar in the command window.

• ’schur=’ [true | false] - Calculate triangular (Schur) representation of the estimated VAR
straight away.

• ’stdize=’ [true | false] - Adjust the prior dummy observations by the std dev of the
observations.

• ’timeWeights=’ [tseries | empty] - Time series of weights applied to individual periods in
the estimation range.

• ’tolerance=’ [numeric | 1e-5] - Convergence tolerance when generalised least squares algo-
rithm is involved.

• ’warning=’ [true | false] - Display warnings produced by this function.

Options for panel VAR

• ’fixedEff=’ [true | false] - Include constant dummies for fixed effect in panel estimation;
applies only if ’constant=’ true.

• ’groupWeights=’ [numeric | empty] - A 1-by-NGrp vector of weights applied to groups in
panel estimation, where NGrp is the number of groups; the weights will be rescaled so as to
sum up to 1.

Description

Estimating a panel VAR

Panel VAR objects are created by calling the function VAR P245 with two input arguments: the
list of variables, and the list of group names. To estimate a panel VAR, the input data, Inp, must
be organised a super-database with sub-databases for each group, and time series for each variables
within each group:

d.Group1_Name.Var1_Name

d.Group1_Name.Var2_Name

221

Vector Autoregressions (VAR Objects): ferf

...

d.Group2_Name.Var1_Name

d.Group2_Name.Var2_Name

...

Example

ferf
Forecast error response function

Syntax

[R,C] = ferf(V,NPer)

[R,C] = ferf(V,Range)

Input arguments

• V [VAR] - VAR object for which the forecast error response function will be computed.

• NPer [numeric] - Number of periods.

• Range [numeric] - Date range.

Output arguments

• Resp [tseries | struct] - Forecast error response functions.

• Cum [tseries | struct] - Cumulative forecast error response functions.

Options

• ’presample=’ [true | false] - Include zeros for pre-sample initial conditions in the output
data.

• ’select=’ [cellstr | char | logical | numeric | Inf] - Selection of variable to whose forecast
errors the responses will be simulated.

222

Vector Autoregressions (VAR Objects): filter

Description

Example

filter
Filter data using a VAR model

Syntax

[V,Outp] = filter(V,Inp,Range,...)

Input arguments

• V [VAR] - Input VAR object.

• Inp [struct] - Input database from which initial condition will be read.

• Range [numeric] - Forecast range.

Output arguments

• V [VAR] - Output VAR object.

• Outp [struct] - Output database with prediction and/or smoothed data.

Options

• ’cross=’ [numeric | 1] - Multiply the off-diagonal elements of the covariance matrix (cross-
covariances) by this factor; ’cross=’ must be equal to or smaller than 1.

• ’deviation=’ [true | false] - Both input and output data are deviations from the uncon-
ditional mean.

• ’meanOnly=’ [true | false] - Return a plain database with mean forecasts only.

• ’omega=’ [numeric | empty] - Modify the covariance matrix of residuals for this run of the
filter.

223

Vector Autoregressions (VAR Objects): forecast

Description

Example

fmse
Forecast mean square error matrices

Syntax

[F,X] = fmse(V,NPer)

[F,X] = fmse(V,Range)

Input arguments

• V [VAR] - VAR object for which the forecast MSE matrices will be computed.

• NPer [numeric] - Number of periods.

• Range [numeric] - Date range.

Output arguments

• F [namedmat | numeric] - Forecast MSE matrices.

• X [dbase | tseries] - Database or tseries with the std deviations of individual variables, i.e. the
square roots of the corresponding diagonal elements of M.

Options

• ’matrixFmt=’ [’namedmat’ | ’plain’] - Return matrix F as either a namedmat P205 object
(i.e. matrix with named rows and columns) or a plain numeric array.

forecast
Unconditional or conditional VAR forecasts

224

Vector Autoregressions (VAR Objects): fprintf

Syntax

Outp = forecast(V,Inp,Range,...)

Outp = forecast(V,Inp,Range,Cond,...)

Input arguments

• V [VAR] - VAR object.

• Inp [struct] - Input database from which initial condition will be read.

• Range [numeric] - Forecast range; must not refer to Inf.

• Cond [struct | tseries] - Conditioning database with the mean values of residuals, reduced-form
conditions on endogenous variables, and conditioning instruments.

Output arguments

• Outp [struct] - Output database with forecasts of endogenous variables, residuals, and con-
ditioning instruments.

Options

• ’cross=’ [numeric | 1] - Multiply the off-diagonal elements of the covariance matrix (cross-
covariances) by this factor; ’cross=’ must be equal to or smaller than 1.

• ’dbOverlay=’ [true | false] - Combine the output data with the input data; works only if
the input data is a database.

• ’deviation=’ [true | false] - Both input and output data are deviations from the uncon-
ditional mean.

• ’meanOnly=’ [true | false] - Return a plain database with mean forecasts only.

• ’omega=’ [numeric | empty] - Modify the covariance matrix of residuals for this forecast.

Description

Example

225

Vector Autoregressions (VAR Objects): get

fprintf
Write VAR model as formatted model code to text file

Syntax

[C,D] = fprintf(V,File,...)

Input arguments

• V [VAR] - VAR object that will be printed to a model file.

• File [char | cellstr] - Filename, or filename format string, under which the model code will
be saved.

• Output arguments

• C [cellstr] - Text string with the model code for each parameterisation.

• D [cell] - Parameter databases for each parameterisation; if ’hardParameters=’ true, the
database will be empty.

Options

See help on sprintf P241 for options available.

Description

For VAR objects with Na multiple alternative parameterisations, the filename File must be either
a 1-by-Na cell array of string with a filename for each parameterisation, or a sprintf format string
where a single occurence of ’%g’ will be replaced with the parameterisation number.

Example

get
Query VAR object properties

226

Vector Autoregressions (VAR Objects): get

Syntax

Ans = get(V,Query)

[Ans,Ans,...] = get(V,Query,Query,...)

Input arguments

• V [VAR] - VAR object.

• Query [char] - Query to the VAR object.

Output arguments

• Ans [. . .] - Answer to the query.

Valid queries to VAR objects

VAR variables

• ’yList’ – Returns [cellstr] the names of endogenous variables.

• ’eList’ – Returns [cellstr] the names of residuals or shocks.

• ’iList’ – Returns [cellstr] the names of conditioning (forecast) instruments.

• ’ny’ – Returns [numeric] the number of variables.

• ’ne’ – Returns [numeric] the number of residuals or shocks.

• ’ni’ – Returns [numeric] the number of conditioning (forecast) instruments.

System matrices

• ’A#’, ’A*’, ’A$’ – Returns [numeric] the transition matrix in one of the three possible
forms; see Description.

• ’K’, ’const’ – Returns [numeric] the constant vector or matrix (the latter for panel VARs).

• ’J’ – Returns [numeric] the coefficient matrix in front of exogenous inputs.

• ’Omg’, ’Omega’ – Returns [numeric] the covariance matrix of one-step-ahead forecast errors,
i.e. reduced-form residuals. Note that this query returns the same matrix also for structural
VAR (SVAR) objects.

227

Vector Autoregressions (VAR Objects): group

• ’Sgm’, ’Sigma’ – Returns [numeric] the covariance matrix of the VAR parameter estimates;
the matrix is non-empty only if the option ’covParam=’ has been set to true at estimation
time.

• ’G’ – Returns [numeric] the coefficient matrix on cointegration terms.

Information criteria

• ’AIC’ – Returns [numeric] Akaike information criterion.

• ’SBC’ – Returns [numeric] Schwarz bayesian criterion.

Other queries

• ’cumLong’ – Returns [numeric] the matrix of long-run cumulative responses.

• ’nFree’ – Returns [numeric] the number of freely estimated (hyper-) parameters.

• ’order’, ’p’ – Returns [numeric] the order of the VAR object.

Description

Transition matrix

There are three queries to request the VAR transition matrix: ’A#’, ’A*’, ’A$’. They differ in how
the higher-order transition matrices are arranged.

• ’A#’ returns cat(3,I,-A1,...,-Ap) where I is an identity matrix, and A1, . . . Ap are the
coefficient matrices on individual lags.

• ’A#’ returns cat(3,A1,...,Ap) where A1, . . . Ap are the coefficient matrices on individual
lags.

• ’A$’ returns [A1,...,Ap] where A1, . . . Ap are the coefficient matrices on individual lags.

Example

group
Retrieve VAR object from panel VAR for specified group of data

228

Vector Autoregressions (VAR Objects): horzcat

Syntax

V = group(V,Grp)

Input arguments

• V [VAR] - Panel VAR object estimated on multiple groups of data.

• Grp [char] - Requested group name; must be one of the names specified when the panel VAR
object was constructed using the function VAR P245 .

Output arguments

• V [VAR] - VAR object for the K-th group of data.

Description

Example

Create and estimate a panel VAR for three variables, x, y, z, and three countries, US, EU, JA. Then,
retrieve a plain VAR for an individual country.

v = VAR({’x’,’y’,’z’},{’US’,’EU’,’JA’});

v = estimate(v,d,range,’fixedEffect=’,true);

vi_us = group(v,’US’);

horzcat
Combine two compatible VAR objects in one object with multiple parameterisa-
tions

Syntax

V = [V1,V2,...]

Input arguments

• V1, V2 [VAR] - Compatible VAR objects that will be combined.

229

Vector Autoregressions (VAR Objects): instrument

Output arguments

• V [VAR] - Output VAR object that combines the input VAR objects as multiple parameter-
isations.

Description

Example

infocrit
Populate information criteria for a parameterised VAR

Syntax

V = infocrit(V)

Input arguments

• V [VAR] - VAR object.

Output arguments

• V [VAR] - VAR object with the AIC and SBC information criteria re-calculated.

Description

In most cases, you don’t have to run the function infocrit as it is called from within estimate

immediately after a new parameterisation is created.

Example

instrument
Define forecast conditioning instruments in VAR models

230

Vector Autoregressions (VAR Objects): integrate

Syntax to add forecast instruments

V = instrument(V,Def)

V = instrument(V,Name,Expr)

V = instrument(V,Name,Vec)

Syntax to remove all forecast instruments

V = instrument(V)

Input arguments

• V [VAR] - VAR object to which forecast instruments will be added.

• Def [char | cellstr] - Definition of the new forecast conditioning instrument.

• Name [char] - Name of the new forecast conditiong instrument.

• Expr [char] - Expression defining the new forecast conditiong instrument.

• Vec [numeric] - Vector of coeffients to combine the VAR variables to create the new forecast
conditioning instrument.

Output arguments

integrate
Integrate VAR process and data associated with it

Syntax

V = integrate(V,...)

Input arguments

• V [VAR] - VAR object whose variables will be integrated by one order.

231

Vector Autoregressions (VAR Objects): isexplosive

Output arguments

• V [VAR] - VAR object with the specified variables integrated by one order.

Options

• ’applyTo=’ [logical | numeric | Inf] - Index of variables to integrate; Inf means all variables
will be integrated.

Description

Example

iscompatible
True if two VAR objects can occur together on the LHS and RHS in an assignment

Syntax

Flag = iscompatible(V1,V2)

Input arguments

• V1, V2 [model] - Two VAR objects that will be tested for compatibility.

Output arguments

• Flag [true | false] - True if V1 and V2 can occur in an assignment, V1(...) = V2(...), or
horizonatl concatenation, [V1,V2].

Description

The function compares the names of all variables, shocks, and parameters, and the composition of
the state-space vectors and matrices.

Example

232

Vector Autoregressions (VAR Objects): ispanel

isexplosive
True if any eigenvalue is outside unit circle

Syntax

Flag = isexplosive(V)

Input arguments

• V [VAR] - VAR object whose eigenvalues will be tested for explosiveness.

Output arguments

• Flag [true | false] - True if at least one eigenvalue is outside unit circle.

Options

• ’tolerance=’ [numeric | getrealsmall()] - Tolerance for the eigenvalue test.

Description

Example

ispanel
True for panel VAR objects

Syntax

Flag = ispanel(X)

Input arguments

• X [VAR | SVAR] - VAR object.

233

Vector Autoregressions (VAR Objects): length

Output arguments

• Flag [true | false] - True if the VAR object, X, is based on a panel of data.

Description

Example

isstationary
True if all eigenvalues are within unit circle

Syntax

Flag = isstationary(V)

Input arguments

• V [VAR] - VAR object whose eigenvalues will be tested for stationarity.

Output arguments

• Flag [true | false] - True if all eigenvalues are within unit circle.

Options

• ’tolerance=’ [numeric | getrealsmall()] - Tolerance for the eigenvalue test.

length
Number of alternative parameterisations in VAR object

Syntax

N = length(V)

234

Vector Autoregressions (VAR Objects): mean

Input arguments

• V [VAR] - VAR object.

Output arguments

• N [numeric] - Number of alternative parameterisations.

Description

Example

lrtest
Likelihood ratio test for VAR models

Syntax

[Stat,Crit] = lrtest(V1,V2,Level)

Input arguments

• V1 [VAR] - Unrestricted VAR model.

• V2 [VAR] - Restricted VAR model.

• Level [numeric] - Significance level; if not specified, 5 percent significance is used, Level=0.05.

Output arguments

• Stat [numeric] - LR test stastic.

• Crit [numeric] - LR test critical value based on chi-square distribution.

Description

Example

235

Vector Autoregressions (VAR Objects): nfitted

mean
Mean of VAR process

Syntax

M = mean(V)

Input arguments

• V [VAR] - VAR object.

Output arguments

• M [numeric] - Asymptotic mean of the VAR variables.

Description

For plain VAR objects, the output argument X is a column vector where the k-th number is the
asymptotic mean of the k-th variable, or NaN if the k-th variable is non-stationary (contains a unit
root).

In panel VAR objects (with a total of Ng groups) and/or VAR objects with multiple alternative
parameterisations (with a total of Na parameterisations), X is an Ny-by-Ng-by-Na matrix in which
the column X(:,g,a) is the asyptotic mean of the VAR variables in the g-th group and the a-th
parameterisation.

In VAR objects with exogenous inputs, the mean will be computed based on the asymptotic as-
sumptions of exogenous inputs assigned by the function xasymptote P247 .

Example

nfitted
Number of data points fitted in VAR estimation

Syntax

N = nfitted(V)

236

Vector Autoregressions (VAR Objects): portest

Input arguments

• V [VAR] - Estimated VAR object.

Output arguments

• N [numeric] - Number of data points (periods) fitted when estimating the VAR object.

Description

Example

portest
Portmanteau test for autocorrelation in VAR residuals

Syntax

[Stat,Crit] = portest(V,Data,H)

Input arguments

• V [VAR | swar] - Estimated VAR from which the tested residuals were obtained.

• Data [tseries] - VAR residuals, or VAR output data including residuals, to be tested for
autocorrelation.

• H [numeric] - Test horizon; must be greater than the order of the tested VAR.

Output arguments

• Stat [numeric] - Portmanteau test statistic.

• Crit [numeric] - Portmanteau test critical value based on chi-square distribution.

Options

• ’level=’ [numeric | 0.05] - Requested significance level for computing the criterion Crit.

237

Vector Autoregressions (VAR Objects): resample

Description

Example

resample
Resample from a VAR object

Syntax

Outp = resample(V,Inp,Range,NDraw,...)

Outp = resample(V,[],Range,NDraw,...)

Input arguments

• V [VAR] - VAR object to resample from.

• Inp [struct | tseries] - Input database or tseries used in bootstrap; not needed when ’method=’

’montecarlo’.

• Range [numeric] - Range for which data will be returned.

Output arguments

• Outp [struct | tseries] - Resampled output database or tseries.

Options

• ’deviation=’ [true | false] - Do not include the constant term in simulations.

• ’group=’ [numeric | NaN] - Choose group whose parameters will be used in resampling;
required in VAR objects with multiple groups when ’deviation=’ false.

• ’method=’ [’bootstrap’ | ’montecarlo’ | function_handle] - Bootstrap from estimated
residuals, resample from normal distribution, or use user-supplied sampler.

• ’progress=’ [true | false] - Display progress bar in the command window.

• ’randomise=’ [true | false] - Randomise or fix pre-sample initial condition.

• ’wild=’ [true | false] - Use wild bootstrap instead of standard Efron bootstrap when
’method=’ ’bootstrap’.

238

Vector Autoregressions (VAR Objects): schur

Description

Example

rngcmp
True if two VAR objects have been estimated using the same dates

Syntax

Flag = rngcmp(V1,V2)

Input arguments

• V1, V2 [VAR] - Two estimated VAR objects.

Output arguments

• Flag [true | false] - True if the two VAR objects, V1 and V2, have been estimated using
observations at the same dates.

Description

Example

schur
Compute and store triangular representation of VAR

Syntax

V = schur(V)

Input arguments

• V [VAR] - VAR object.

239

Vector Autoregressions (VAR Objects): simulate

Output arguments

• V [VAR] - VAR object with the triangular representation matrices re-calculated.

Description

In most cases, you don’t have to run the function schur as it is called from within estimate

immediately after a new parameterisation is created.

Example

simulate
Simulate VAR model

Syntax

Outp = simulate(V,Inp,Range,...)

Input arguments

• V [VAR] - VAR object that will be simulated.

• Inp [tseries | struct] - Input data from which the initial condtions and residuals will be
taken.

• Range [numeric] - Simulation range; must not refer to Inf.

Output arguments

• Outp [tseries] - Simulated output data.

Options

• ’contributions=’ [true | false] - Decompose the simulated paths into the contributions of
individual residuals, initial condition, the constant, and exogenous inputs; see Description.

• ’deviation=’ [true | false] - Treat input and output data as deviations from unconditional
mean.

240

Vector Autoregressions (VAR Objects): sprintf

• ’output=’ [’auto’ | ’dbase’ | ’tseries’] - Format of output data.

Description

Backward simulation (backcast)

If the Range is a vector of decreasing dates, the simulation is performed backward. The VAR object
is first converted to its backward representation using the function backward P216 , and then the
data are simulated from the latest date to the earliest date.

Simulation of contributions

With the option ’contributions=’ true, the output database contains Ne+2 columns for each
variable, where Ne is the number of residuals. The first Ne columns are the contributions of the
individual shocks, the (Ne+1)-th column is the contribution of initial condition and the constant,
and the last, (Ne+2)-th columns is the contribution of exogenous inputs.

Contribution simulations can be only run on VAR objects with one parameterization.

Example

sprintf
Print VAR model as formatted model code

Syntax

[C,D] = sprintf(V,...)

Input arguments

• V [VAR] - VAR object that will be printed as a formatted model code.

• Output arguments

• C [cellstr] - Text string with the model code for each parameterisation.

• D [cell] - Parameter database for each parameterisation; if ’hardParameters=’ is true, the
databases will be empty.

241

Vector Autoregressions (VAR Objects): sspace

Options

• ’decimal=’ [numeric | empty] - Precision (number of decimals) at which the coefficients will
be written if ’hardParameters=’ is true; if empty, the ’format=’ options is used.

• ’declare=’ [true | false] - Add declaration blocks and keywords for VAR variables, shocks,
and equations.

• ’eNames=’ [cellstr | char | empty] - Names that will be given to the VAR residuals; if empty,
the names from the VAR object will be used.

• ’format=’ [char | ‘%+.16g’] - Numeric format for parameter values; it will be used only if
’decimal=’ is empty.

• ’hardParameters=’ [true | false] - Print coefficients as hard numbers; otherwise, create
parameter names and return a parameter database.

• ’yNames=’ [cellstr | char | empty] - Names that will be given to the variables; if empty, the
names from the VAR object will be used.

• ’tolerance=’ [numeric | getrealsmall()] - Treat VAR coefficients smaller than ’tolerance=’

in absolute value as zeros; zero coefficients will be dropped from the model code.

Description

Example

sspace
Quasi-triangular state-space representation of VAR

Syntax

[T,R,K,Z,H,D,Cov] = sspace(V,...)

Input arguments

• V [VAR] - VAR object.

242

Vector Autoregressions (VAR Objects): subsasgn

Output arguments

• T [numeric] - Transition matrix.

• R [numeric] - Matrix of instantaneous effect of residuals (forecast errors).

• K [numeric] - Constant vector in transition equations.

• Z [numeric] - Matrix mapping transition variables to measurement variables.

• H [numeric] - Matrix at the shock vector in measurement equations (all zeros in VAR objects).

• D [numeric] - Constant vector in measurement equations (all zeros in VAR objects).

• U [numeric] - Transformation matrix for predetermined variables.

• Cov [numeric] - Covariance matrix of residuals (forecast errors).

Description

Example

subsasgn
Subscripted assignment for VAR objects

Syntax to assign parameterisations from other VAR object

V(inx) = W

Syntax to delete specified parameterisations

V(Inx) = []

Input arguments

• V [VAR] - VAR object.

• inx [numeric] - Index of parameterisations that will be assigned or deleted.

• W [VAR] - VAR object compatible with V whose parameterisations will be assigned (copied)
into V.

243

Vector Autoregressions (VAR Objects): userdata

Output arguments

• V [model] - VAR object with newly assigned or deleted parameterisations,

Description

Example

Expand the number of parameterisations in a VAR object that has initially just one parameterisa-
tion:

V(1:10) = V;

The parameterisation is simply copied ten times within the VAR object.

subsref
Subscripted reference for VAR objects

Syntax to retrieve VAR object with subset of parameterisations

V(Inx)

Input arguments

• V [VAR] - VAR object.

• Inx [numeric | logical] - Index of requested parameterisations.

Description

Example

userdata
Get or set user data in an IRIS object

244

Vector Autoregressions (VAR Objects): VAR

Syntax for getting user data

X = userdata(Obj)

Syntax for assigning user data

OBJ = userdata(Obj,X)

Input arguments

• Obj [model | tseries | VAR | SVAR | FAVAR] - One of the IRIS objects with access to user
data functions.

• X [. . .] - Any kind of data that will be attached to, and stored within, the object OBJ.

Output arguments

• X [. . .] - User data that are currently attached to the object.

• Obj [model | tseries | VAR | SVAR | FAVAR] - The object with its user data updated.

Description

Example

VAR
Create new empty reduced-form VAR object

Syntax for plain VAR and VARX

V = VAR(YNames)

V = VAR(YNames,’exogenous=’,XNames)

245

Vector Autoregressions (VAR Objects): vma

Syntax for panel VAR and VARX

V = VAR(YNames,’groups=’,GroupNames)

V = VAR(YNames,’exogenous=’,XNames,’groups=’,GroupNames)

Output arguments

• V [VAR] - New empty VAR object.

• YNames [cellstr | char | function_handle] - Names of endogenous variables.

• XNames [cellstr | char | function_handle] - Names of exogenous inputs.

• GroupNames [cellstr | char | function_handle] - Names of groups for panel VAR estimation.

Options

• ’exogenous=’ [cellstr | empty] - Names of exogenous inputs; one of the names can be !ttrend,
a linear time trend, which will be created automatically each time input data are required,
and then included in the output database under the name ttrend.

• ’groups=’ [cellstr | empty] - Names of groups for panel VAR estimation.

Description

This function creates a new empty VAR object. It is usually followed by an estimate P219 com-
mand to estimate the VAR parameters on the data.

Example

To estimate a VAR, you first need to create an empty VAR object specifying the variable names,
and then run the VAR/estimate P219 function on it, e.g.

v = VAR({’x’,’y’,’z’});

[v,d] = estimate(v,d,range);

where the input database d ought to contain time series d.x, d.y, d.z.

246

Vector Autoregressions (VAR Objects): xasymptote

vma
Matrices describing the VMA representation of a VAR process

Syntax

Phi = vma(V,N)

Input arguments

• V [VAR] - VAR object for which the VMA matrices will be computed.

• N [numeric] - Order up to which the VMA matrices will be computed.

Output arguments

• Phi [numeric] - VMA matrices.

Description

Example

xasymptote
Set or get asymptotic assumptions for exogenous inputs

Syntax

V = xasymptote(V,X0)

X = xasymptote(V)

Input arguments

• V [VAR] - VAR object.

• X0 [numeric] - A Nx-NGrp-by-NAlt vector or matrix of asymptotic assumptions for exogenous
inputs, where Nx is the number of exogenous variables, NGrp is the number of groups in panel
VARs, and NAlt is the number of alternative parameterizations.

247

Vector Autoregressions (VAR Objects): xsf

Output arguments

• V [VAR] - VAR object.

Description

The asymptotic assumptions for exogenous inputs are used in the following contexts:

• to compute the asymptotic mean of the VAR process, mean P236 ;

• to set up initical conditions for resampling, resample P238 , when they are not supplied in
the input database.

If any of the three dimensions of the vector/matrix X0 is size 1, it will be automatically expanded
to its appropriate size.

The asymptotic assumptions are reset to NaN each time the VAR object is estimated using the
function estimate P219 .

Example

xsf
Power spectrum and spectral density functions for VAR variables

Syntax

[S,D] = xsf(V,Freq,...)

Input arguments

• V [VAR] - VAR object.

• Freq [numeric] - Vector of Frequencies at which the XSFs will be evaluated.

Output arguments

• S [numeric] - Power spectrum matrices.

• D [numeric] - Spectral density matrices.

248

Vector Autoregressions (VAR Objects): xsf

Options

• ’applyTo=’ [cellstr | char | @all] - List of variables to which the ’filter=’ will be applied;
@all means all variables.

• ’filter=’ [char | empty] - Linear filter that is applied to variables specified by ‘applyto’.

• ’nFreq=’ [numeric | 256] - Number of equally spaced frequencies over which the ‘filter’ is
numerically integrated.

• ’progress=’ [true | false] - Display progress bar in the command window.

Description

The output matrices, S and D, are N-by-N-by-K, where N is the number of VAR variables and K is
the number of frequencies (i.e. the length of the vector freq).

The k-th page is the S matrix, i.e. S(:,:,k), is the cross-spectrum matrix for the VAR variables
at the k-th frequency. Similarly, the k-th page in D, i.e. D(:,:,k), is the cross-density matrix.

Example

249

Structural Vector Autoregressions (SVAR Objects): fevd

14 Structural Vector Autoregressions (SVAR Objects)

SVAR methods:

Constructor

• SVAR P255 - Convert reduced-form VAR to structural VAR.

SVAR objects can call any of the VAR P211 functions. In addition, the following functions are
available for SVAR objects.

Getting information about SVAR objects

• get P252 - Query SVAR object properties.

Simulation

• srf P254 - Shock (impulse) response function.

Stochastic properties

• fevd P251 - Forecast error variance decomposition for SVAR variables.

Manipulating SVAR objects

• sort P253 - Sort SVAR parameterisations by squared distance of shock reponses to median.

See help on VAR P211 objects for other functions available.

Getting on-line help on SVAR functions

help SVAR

help SVAR/function_name

Getting on-line help on SVAR functions that are inherited from VARs

help VAR

help VAR/function_name

250

Structural Vector Autoregressions (SVAR Objects): fevd

fevd
Forecast error variance decomposition for SVAR variables

Syntax

[X,Y,XX,YY] = fevd(V,NPer)

[X,Y,XX,YY] = fevd(V,Range)

Input arguments

• V [VAR] - Structural VAR model.

• NPer [numeric] - Number of periods.

• Range [numeric] - Date range.

Output arguments

• X [namedmat | numeric] - Forecast error variance decomposition into absolute contributions
of residuals; absolute contributions sum up to the total variance.

• Y [namedmat | numeric] - Forecast error variance decomposition into relative contributions
of residuals; relative contributions sum up to 1.

• XX [tseries] - Database with a tseries with absolute contributions in columns for each VAR
variable.

• YY [tseries] - Database with a tseries with relative contributions in columns for each VAR
variable.

Options

• ’matrixFmt=’ [’namedmat’ | ’plain’] - Return matrices X and Y as be either namedmat P205

objects (i.e. matrices with named rows and columns) or plain numeric arrays.

Description

The output matrices X and Y are Ny-by-Ny-by-Nt-by-NAlt namedmat objects (matrices with named
rows and columns), where Ny is the number of endogenous variables (and hence also structural
residuals), Nt is the number of periods, and NAlt is the number of alternative parameterizations.

The output databases XX and YY contain Nt-by-Ny-by-NAlt tseries objects (one for each endogenous
variable).

251

Structural Vector Autoregressions (SVAR Objects): sort

Example

get
Query SVAR object properties

Syntax

Ans = get(V,Query)

[Ans,Ans,...] = get(V,Query,Query,...)

Input arguments

• V [SVAR] - SVAR object.

• Query [char] - Query to the SVAR object.

Output arguments

• Ans [. . .] - Answer to the query.

Valid queries to SVAR objects

All queries to VAR objects, listed and described in VAR/get P226 , can also be used in SVAR objects.
In addition, the following queries are specific to SVAR objects:

• ’B’ – Returns [numeric] matrix of instantaneous effects of shocks.

• ’std’ – Returns [numeric] std deviation of structural shocks.

• ’method’ – Returns [char] identification method used to convert reduced-form VAR to
structural VAR.

Description

Example

252

Structural Vector Autoregressions (SVAR Objects): sort

sort
Sort SVAR parameterisations by squared distance of shock reponses to median

Syntax

[B,~,Inx,Crit] = sort(A,[],SortBy,...)

[B,Data,Inx,Crit] = sort(A,Data,SortBy,...)

Input arguments

• A [SVAR] - SVAR object with multiple parameterisations that will be sorted.

• Data [struct | empty] - SVAR database; if non-empty, the structural shocks will be re-ordered
according to the SVAR parameterisations.

• SortBy [char] - Text string that will be evaluated to compute the criterion by which the
parameterisations will be sorted; see Description for how to write SortBy.

Output arguments

• B [SVAR] - SVAR object with parameterisations sorted by the specified criterion.

• Data [tseries | struct | empty] - SVAR data with the structural shocks re-ordered to correspond
to the order of parameterisations.

• Inx [numeric] - Vector of indices so that B = A(Inx).

• Crit [numeric] - The value of the criterion based on the string SortBy for each parameteri-
sation.

Options

• ’progress=’ [true | false] - Display progress bar in the command window.

Description

The individual parameterisations within the SVAR object A are sorted by the sum of squared
distances of selected shock responses to the respective median reponses. Formally, the following
criterion is evaluated for each parameterisation

253

Structural Vector Autoregressions (SVAR Objects): srf

X

i2I;j2J;k2K

[Si;j(k)�Mi;j(k)]
2

where Si;j(k) denotes the response of the i-th variable to the j-th shock in period k, and Mi;j(k)

is the median responses. The sets of variables, shocks and periods, i.e. I, J, K, respectively, over
which the summation runs are determined by the user in the SortBy string.

How do you select the shock responses that enter the criterion in SortBy? The input argument
SortBy is a text string that refers to array S, whose element S(i,j,k) is the response of the i-th
variable to the j-th shock in period k.

Note that when you pass in SVAR data and request them to be sorted the same way as the SVAR
parameterisations (the second line in Syntax), the number of parameterisations in A must match
the number of data sets in Data.

Example

Sort the parameterisations by squared distance to median of shock responses of all variables to the
first shock in the first four periods. The parameterisation that is closest to the median responses

S2 = sort(S1,[],’S(:,1,1:4)’)

srf
Shock (impulse) response function

Syntax

[Resp,Cum] = srf(V,NPer)

[Resp,Cum] = srf(V,Range)

Input arguments

• V [SVAR] - SVAR object for which the impulse response function will be computed.

• NPer [numeric] - Number of periods.

• Range [numeric] - Date range.

254

Structural Vector Autoregressions (SVAR Objects): SVAR

Output arguments

• Resp [tseries | struct] - Shock response functions.

• Cum [tseries | struct] - Cumulative shock response functions.

Options

• ’presample=’ [true | false] - Include zeros for pre-sample initial conditions in the output
data.

• ’select=’ [cellstr | char | logical | numeric | Inf] - Selection of shocks to which the responses
will be simulated.

Description

Example

SVAR
Convert reduced-form VAR to structural VAR

Syntax

[S,DATA,B,COUNT] = SVAR(V,DATA,...)

Input arguments

• V [VAR] - Reduced-form VAR object.

• DATA [struct | tseries] - Data associated with the input VAR object.

Output arguments

• S [VAR] - Structural VAR object.

• DATA [struct | tseries] - Data with transformed structural residuals.

• B [numeric] - Impact matrix of structural residuals.

255

Structural Vector Autoregressions (SVAR Objects): SVAR

• COUNT [numeric] - Number of draws actually performed (both successful and unsuccessful)
when ’method’=’draw’; otherwise COUNT=1.

Options

• ’maxIter=’ [numeric | 0] - Maximum number of attempts when ’method’=’draw’.

• ’method=’ [’chol’ | ’householder’ | ’qr’ | ’svd’] - Method that will be used to identify
structural VAR and structural shocks.

• ’nDraw=’ [numeric | 0] - Target number of successful draws when ’method’=’draw’.

• ’reorder=’ [numeric | empty] - Reorder VAR variables before identifying structural shocks,
and bring the variables back in original order afterwards. Use the option ’backorderResiduals=’
to control if also the structural shocks are to be brought back in original order.

• ’output=’ [’auto’ | ’dbase’ | ’tseries’] - Format of output data.

• ’progress=’ [true | false] - Display progress bar in the command window.

• ’rank=’ [numeric | Inf] - Reduced rank of the covariance matrix of structural residuals when
’method=’ ’svd’; Inf means full rank is preserved.

• ’backOrderResiduals=’ [true | false] - Bring the identified structural shocks back in original
order after identification; works with ’reorder=’.

• ’std=’ [numeric | 1] - Std deviation of structural residuals; the resulting structural covariance
matrix will be re-scaled (divided) by this factor.

• ’test=’ [char] - Works with ’method=draw’ only; a string that will be evaluated for each
random draw of the impact matrix B. The evaluation must result in true or false; only the
matrices B that evaluate to true will be kept. See Description for more on how to write the
option ’test=’.

Description

Identification random Householder transformations

The structural impact matrices B are randomly generated using a Householder transformation
algorithm. Each matrix is tested by evaluating the test string supplied by the user. If it evaluates
to true the matrix is kept and one more SVAR parameterisation is created, if it is false the matrix
is discarded.

The test string can refer to the following characteristics:

256

Structural Vector Autoregressions (SVAR Objects): SVAR

• S – the impulse (or shock) response function; the S(i,j,k) element is the response of the i-th
variable to the j-th shock in period k.

• Y – the asymptotic cumulative response function; the Y(i,j) element is the asumptotic (long-
run) cumulative response of the i-th variable to the j-th shock.

Example

257

Bayesian VAR Priors (BVAR Package): covmat

15 Bayesian VAR Priors (BVAR Package)

The BVAR package is used to create basic types of prior dummy observations when estimating
Bayesian VAR models. The dummy observations are passed in the VAR/estimate P219 function
through the ’BVAR=’ option.

Constructing dummy observations

• covmat P258 - Covariance matrix prior dummy observations for BVARs.
• litterman P259 - Litterman’s prior dummy observations for BVARs.
• sumofcoeff P260 - Doan et al sum-of-coefficient prior dummy observations for BVARs.
• uncmean P260 - Unconditional-mean dummy (or Sims’ initial dummy) observations for BVARs.
• user P261 - User-supplied prior dummy observations for BVARs.

Weights on prior dummy observations

The prior dummies produced by litterman P259 , uncmean P260 , sumofcoeff P260 can be weighted
up or down using the input argument Mu. To give the weight a clear interpretation, use the option
’stdize=’ true when estimating the VAR. In that case, setting Mu to sqrt(N) means the prior
dummies are worth a total of extra N artifical observations; the weight can be related to the actual
number of observations used in estimation.

Getting help on BVAR functions

help BVAR

help BVAR/function_name

covmat
Covariance matrix prior dummy observations for BVARs

Syntax

O = BVAR.covmat(C,Rep)

258

Bayesian VAR Priors (BVAR Package): litterman

Input arguments

• C [numeric] - Prior covariance matrix of residuals; if C is a vector it will be converted to a
diagonal matrix.

• Rep [numeric] - The number of times the dummy observations will be repeated.

Output arguments

• O [bvarobj] - BVAR object that can be passed into the VAR/estimate P219 function.

Description

Example

litterman
Litterman’s prior dummy observations for BVARs

Syntax

O = BVAR.litterman(Rho,Mu,Lmb)

Input arguments

• Rho [numeric] - White-noise priors (Rho = 0) or random-walk priors (Rho = 1), or something
in between.

• Mu [numeric] - Weight on dummy observations.

• Lmb [numeric] - Exponential increase in weight depending on the lag; Lmb = 0 means all lags
are weighted equally.

Output arguments

• O [bvarobj] - BVAR object that can be passed into the VAR/estimate P219 function.

259

Bayesian VAR Priors (BVAR Package): uncmean

Description

See the section explaining the weights on prior dummies P258 , i.e. the input argument Mu.

Example

sumofcoeff
Doan et al sum-of-coefficient prior dummy observations for BVARs

Syntax

O = BVAR.sumofcoeff(Mu)

Input arguments

• Mu [numeric] - Weight on the dummy observations.

Output arguments

• O [bvarobj] - BVAR object that can be passed into the VAR/estimate P219 function.

Description

See the section explaining the weights on prior dummies P258 , i.e. the input argument Mu.

Example

uncmean
Unconditional-mean dummy (or Sims’ initial dummy) observations for BVARs

260

Bayesian VAR Priors (BVAR Package): user

Syntax

O = BVAR.uncmean(YBar,Mu)

Input arguments

• YBar [numeric] - Vector of unconditional means imposed as priors.

• Mu [numeric] - Weight on the dummy observations.

Output arguments

• X [numeric] - Array with prior dummy observations that can be used in the ’BVAR=’ option
of the VAR/estimate P219 function.

• O [bvarobj] - BVAR object that can be passed into the VAR/estimate P219 function.

Description

See the section explaining the weights on prior dummies P258 , i.e. the input argument Mu.

Example

user
User-supplied prior dummy observations for BVARs

Syntax

O = BVAR.user(Y0,K0,Y1,G1)

Input arguments

• Y0 [numeric] - Column-wise prior dummy observations on the LHS.

• K0 [numeric] - Column-wise prior dummy observations on the RHS constant.

261

Bayesian VAR Priors (BVAR Package): user

• Y1 [numeric] - Column-wise prior dummy observations on the RHS lagged variables.

• G1 [numeric] - Column-wise prior dummy observations on the RHS coefficients on the co-
integrating vector.

Output arguments

• O [bvarobj] - BVAR object that can be passed into the VAR/estimate P219 function.

Description

Example

262

Factor-Augmented Vector Autoregressions (FAVAR Objects): comment

16 Factor-Augmented Vector Autoregressions (FAVAR
Objects)

Constructor

• FAVAR P265 - Create new empty FAVAR object.

Getting information about FAVAR objects

• comment P263 - Get or set user comments in an IRIS object.
• get P268 - Query model object properties.
• isempty P270 - True if VAR based object is empty.
• userdata P271 - Get or set user data in an IRIS object.
• VAR P271 - Return a VAR object describing the factor dynamics.

Estimation

• estimate P264 - Estimate FAVAR using static principal components.

Filtering and forecasting

• filter P266 - Re-estimate the factors by Kalman filtering the data taking FAVAR coefficients
as given.

• forecast P268 - Forecast FAVAR factors and observables.

Getting on-line help on FAVAR functions

help FAVAR

help FAVAR/function_name

comment
Get or set user comments in an IRIS object

Syntax for getting user comments

Cmt = comment(Obj)

263

Factor-Augmented Vector Autoregressions (FAVAR Objects): estimate

Syntax for assigning user comments

Obj = comment(Obj,Cmt)

Input arguments

• Obj [model | tseries | VAR | SVAR | FAVAR | sstate] - One of the IRIS objects.

• Cmt [char] - User comment that will be attached to the object.

Output arguments

• Cmt [char] - User comment that are currently attached to the object.

Description

Example

estimate
Estimate FAVAR using static principal components

Syntax

[A,D,CC,F,U,E,CTF] = estimate(A,D,Range,[R,Q],...)

Input arguments

• A [FAVAR] - Empty FAVAR object.

• D [struct] - Input database.

• Range [numeric] - Estimation range.

• R [numeric] - Selection criterion for the number of factors: Minimum requested proportion
of input data volatility explained by the factors.

• Q [numeric] - Selection criterion for the number of factors: Maximum number of factors.

264

Factor-Augmented Vector Autoregressions (FAVAR Objects): FAVAR

Output arguments

• A [FAVAR] - Estimated FAVAR object.

• D [struct] - Output database.

• CC [tseries] - Estimates of common components in the FAVAR observables.

• F [tseries] - Estimates of factors.

• U [struct | tseries] - Idiosyncratic residuals.

• E [tseries] - Factor VAR residuals.

• CTF [tseries] - Contributions of individual input series to the estimated factors.

Options

• ’cross=’ [true | false | numeric] - Keep off-diagonal elements in the covariance matrix of
idiosyncratic residuals; if false all cross-covariances are reset to zero; if a number between zero
and one, all cross-covariances are multiplied by that number.

• ’order=’ [numeric | 1] - Order of the VAR for factors.

• ’output=’ [’auto’ | ’dbase’ | ’tseries’] - Format of output data.

• ’rank=’ [numeric | Inf] - Restriction on the rank of the factor VAR residuals.

Description

Example

FAVAR
Create new empty FAVAR object

Syntax

F = FAVAR(YNames)

265

Factor-Augmented Vector Autoregressions (FAVAR Objects): filter

Input arguments

• YNames [cellstr | char] - Names of observed variables in the FAVAR model.

Output arguments

• F [FAVAR] - New FAVAR object.

Description

This function creates a new empty FAVAR object. It is usually followed by the estimate P264

function to estimate the FAVAR parameters on data.

Example

To estimate a FAVAR, you first need to create an empty VAR object, and then run the FAVAR P264

function on it, e.g.

list = {’DLCPI’,’DLGDP’,’R’};

f = FAVAR(list);

f = estimate(f,d,range);

filter
Re-estimate the factors by Kalman filtering the data taking FAVAR coefficients as
given

Syntax

[A,D,CC,F,U,E] = filter(A,D,Range,...)

Input arguments

• A [FAVAR] - Estimated FAVAR object.

• D [struct | tseries] - Input database or tseries object with the FAVAR observables.

• Range [numeric] - Filter date range.

266

Factor-Augmented Vector Autoregressions (FAVAR Objects): forecast

Output arguments

• A [FAVAR] - FAVAR object.

• D [struct] - Output database or tseries object with the FAVAR observables.

• CC [struct | tseries] - Re-estimated common components in the observables.

• F [tseries] - Re-estimated common factors.

• U [tseries] - Re-estimated idiosyncratic residuals.

• E [tseries] - Re-estimated structural residuals.

Options

• ’cross=’ [true | false | numeric] - Run the filter with the off-diagonal elements in the
covariance matrix of idiosyncratic residuals; if false all cross-covariances are reset to zero; if a
number between zero and one, all cross-covariances are multiplied by that number.

• ’invFunc=’ [’auto’ | function_handle] - Inversion method for the FMSE matrices.

• ’meanOnly=’ [true | false] - Return only mean data, i.e. point estimates.

• ’persist=’ [true | false] - If filter or forecast is used with ’persist=’ set to true for
the first time, the forecast MSE matrices and their inverses will be stored; subsequent calls
of the filter or forecast functions will re-use these matrices until filter or forecast is
called.

• ’output=’ [’auto’ | ’dbase’ | ’tseries’] - Format of output data.

• ’tolerance=’ [numeric | 0] - Numerical tolerance under which two FMSE matrices computed
in two consecutive periods will be treated as equal and their inversions will be re-used, not
re-computed.

Description

It is the user’s responsibility to make sure that filter and forecast called with ’persist=’ set
to true are valid, i.e. that the previously computed FMSE matrices can be really re-used in the
current run.

Example

267

Factor-Augmented Vector Autoregressions (FAVAR Objects): get

forecast
Forecast FAVAR factors and observables

Syntax

[D,CC,F,U,E] = forecast(A,D,RANGE,J,...)

Input arguments

• A [FAVAR] - FAVAR object.

• D [struct | tseries] - Input data with initial condition for the FAVAR factors.

• RANGE [numeric] - Forecast range.

• J [struct | tseries] - Conditioning data with hard tunes on the FAVAR observables.

Output arguments

• D [struct] - Output database or tseries object with the FAVAR observables.

• CC [struct | tseries] - Projection of common components in the observables.

• F [tseries] - Projection of common factors.

• U [tseries] - Conditional idiosyncratic residuals.

• E [tseries] - Conditional structural residuals.

Options

See help on FAVAR/filter P266 for options available.

Description

Example

get
Query model object properties

268

Factor-Augmented Vector Autoregressions (FAVAR Objects): get

Syntax

Ans = get(A,Query)

[Ans,Ans,...] = get(A,Query,Query,...)

Input arguments

• A [FAVAR] - FAVAR object.

• Query [char] - Query to the FAVAR object.

Output arguments

• Ans [. . .] - Answer to the query.

Valid queries to FAVAR objects

System matrices

• ’A*’ Returns [numeric] the transition matrix of the underlying VAR system on factors.

• ’B’ Returns [numeric] tne matrix mapping the impact of structural residuals on the factors
in the underlying VAR.

• ’C’ Returns [numeric] the matrix mapping the factors into the observables.

• ’Omega’ Returns [numeric] the reduced-form covariance matrix of the residuals in the un-
derlying VAR.

• ’Sigma’ Returns [numeric] the covariance matrix of idiosyncratic shocks.

Underlying VAR

• ’VAR’ Returns [VAR] a VAR object describing the factor dynamics.

Eigenvalues and singular values

• ’eig’ Returns [numeric] the vector of eigenvalues of the underlying VAR.

• ’sing’ Returns [numeric] the vector of singular values from the principal component esti-
mation step.

269

Factor-Augmented Vector Autoregressions (FAVAR Objects): userdata

Observables and factors

• ’mean’ Returns [numeric] the estimated mean of the observables used to standardise the
input data.

• ’std’ Returns [numeric] the estimated std deviations of the observables used to standardise
the input data.

• ’ny’ Returns [numeric] the number of observables.

• ’nx’ Returns [numeric] the number of factors.

• ’yList’ Returns [cellstr] the list of the names of observables.

Description

Example

isempty
True if VAR based object is empty

Syntax

Flag = isempty(X)

Input arguments

• X [VAR | SVAR | FAVAR] - VAR based object.

Output argument

• Flag [true | false] - True if the VAR based object, X, is empty.

Description

Example

270

Factor-Augmented Vector Autoregressions (FAVAR Objects): VAR

userdata
Get or set user data in an IRIS object

Syntax for getting user data

X = userdata(Obj)

Syntax for assigning user data

OBJ = userdata(Obj,X)

Input arguments

• Obj [model | tseries | VAR | SVAR | FAVAR] - One of the IRIS objects with access to user
data functions.

• X [. . .] - Any kind of data that will be attached to, and stored within, the object OBJ.

Output arguments

• X [. . .] - User data that are currently attached to the object.

• Obj [model | tseries | VAR | SVAR | FAVAR] - The object with its user data updated.

Description

Example

VAR
Return a VAR object describing the factor dynamics

Syntax

v = VAR(a)

271

Factor-Augmented Vector Autoregressions (FAVAR Objects): VAR

Input arguments

a [FAVAR] - FAVAR object.

Output arguments

v [VAR] - VAR object describing the dynamic system of the FAVAR factors.

Description

Example

272

Part IV —

Time Series and Database Management

273

Dates and Date Ranges

17 Dates and Date Ranges

Creating IRIS serial date numbers

• bb P275 - IRIS serial date number for bimonthly date.
• bbtoday P276 - IRIS serial date number for current bi-month.
• hh P295 - IRIS serial date number for half-yearly date.
• hhtoday P295 - IRIS serial date number for current half-year.
• mm P296 - IRIS serial date number for monthly date.
• mmtoday P297 - IRIS serial date number for current month.
• qq P297 - IRIS serial date number for quarterly date.
• qqtoday P298 - IRIS serial date number for current quarter.
• ww P302 - IRIS serial date number for weekly date.
• wwtoday P304 - IRIS serial date number for current week.
• yy P304 - IRIS serial date number for yearly date.
• yytoday P305 - IRIS serial date number for current year.

Computing special dates (daily dates only)

• datbom P285 - Beginning of month for the specified daily date.
• datboq P285 - Beginning of quarter for the specified daily date.
• datboy P286 - Beginning of year for the specified daily date.
• dateom P288 - End of month for the specified daily date.
• dateoq P289 - End of quarter for the specified daily date.
• dateoy P289 - End of year for the specified daily date.

Creating date ranges

• datrange P290 - Numerically safe way to create a date range.
• dat2ttrend P283 - Construct linear time trend from date range.
• datxtick P291 - Change ticks, labels and/or date frequency on x-axis in existing tseries
graphs.

Converting dates

• clp2dat P276 - Convert text in system clipboard to dates.
• dat2char P277 - Convert dates to character array.
• dat2charlist P278 - Convert dates to a comma-separated list.
• dat2clp P279 - Convert dates to text and paste to system clipboard.
• dat2dec P279 - Convert dates to decimal grid.

274

Dates and Date Ranges: bb

• dat2str P280 - Convert IRIS dates to cell array of strings.
• dat2ypf P284 - Convert IRIS serial date number to year, period and frequency.
• dec2dat P294 - Convert decimal representation of date to IRIS serial date number.
• str2dat P299 - Convert strings to IRIS serial date numbers.
• textinp2dat P300 - Convert text input to IRIS serial date numbers.

Date comparison

• datcmp P286 - Compare two IRIS serial date numbers.
• datdiff P287 - Number of periods between two dates with check for date frequency.
• rngcmp P298 - Compare two IRIS date ranges.

Daily and weekly dates

• daysinyear P292 - Number of days in year.
• dd P293 - Matlab serial date numbers that can be used to construct daily tseries objects.
• ddtoday P294 - Matlab serial date number for today’s date.
• ww2day P303 - Convert weekly IRIS serial date number to Matlab serial date number.
• weeksinyear P301 - Number of weeks in year.

Getting on-line help on date functions

help dates

help dates/function_name

bb
IRIS serial date number for bimonthly date

Syntax

Dat = bb(Y)

Dat = bb(Y,B)

Input arguments

• Y [numeric] - Years.

275

Dates and Date Ranges: clp2dat

• B [numeric] - Bimonth; if omitted, first bimonth (January-February) is assumed.

Output arguments

• Dat [numeric] - IRIS serial date numbers representing the bimonthly date.

Description

Example

bbtoday
IRIS serial date number for current bi-month

Syntax

Dat = bbtoday()

Output arguments

• Dat [numeric] - IRIS serial date number for current bi-month.

Description

Example

clp2dat
Convert text in system clipboard to dates

Syntax

D = clp2dat(...)

276

Dates and Date Ranges: dat2char

Output arguments

• D [numeric] - IRIS serial date numbers based on the current content of the system clipboard
converted by the str2dat P299 function.

Options

See help on str2dat P299 for options available.

Description

Example

dat2char
Convert dates to character array

Syntax

C = dat2char(Dat,...)

Input arguments

• Dat [numeric] - IRIS serial date numbers that will be converted to character array.

Output arguments

• C [char] - Character array representing the input dates; each line of the array represents one
date from D.

Options

See help on dat2str P280 for options available.

277

Dates and Date Ranges: dat2charlist

Description

Example

We create a quarterly date using the function qq; this function returns an IRIS serial date number.
We then use dat2char to print a humna-readable text representation of that date.

d = qq(2015,3)

d =

8.0620e+03

dat2char(d)

ans =

2015Q3

dat2charlist
Convert dates to a comma-separated list

Syntax

C = dat2charlist(D,...)

Input arguments

• D [numeric] - IRIS serial date numbers that will be converted to a comma-separated list.

Output arguments

• C [char] - Text string with a comma-separated list of dates.

Options

See help on dat2str P280 for options available.

278

Dates and Date Ranges: dat2dec

Description

Example

dat2clp
Convert dates to text and paste to system clipboard

Syntax

C = dat2clp(D,...)

Input arguments

• D [numeric] - IRIS serial date numbers that will be converted to character array and pasted
to the system clipboard.

Output arguments

• C [char] - Character array representing the input dates pasted to the system clipboard; each
line of the array represents one date from D.

Options

See help on dat2str P280 for options available.

Description

Example

dat2dec
Convert dates to decimal grid

279

Dates and Date Ranges: dat2str

Syntax

Dec = dat2dec(Dat)

Dec = dat2dec(Dat,Pos)

Input arguments

• Dat [numeric] - IRIS serial date number.

• Pos [’start’ | ’centre’ | ’end’] - Point within the period that will represent the date; if
omitted, Pos is set to ’start’.

Output arguments

• Dec [numeric] - Decimal grid representing the input dates, computed as Year + (Per-1)/Freq.

Description

Example

dat2str
Convert IRIS dates to cell array of strings

Syntax

S = dat2str(Dat,...)

Input arguments

• Dat [numeric] - IRIS serial date number(s).

Output arguments

• S [cellstr] - Cellstr with strings representing the input dates.

280

Dates and Date Ranges: dat2str

Options

• ’dateFormat=’ [char | cellstr | ’YYYYFP’] - Date format string, or array of format strings
(possibly different for each date).

• ’freqLetters=’ [char | ’YHQBMW’] - Six letters used to represent the six possible frequencies
of IRIS dates, in this order: yearly, half-yearly, quarterly, bi-monthly, monthly, and weekly
(such as the ’Q’ in ’2010Q1’).

• ’months=’ [cellstr | {’January’,...,’December’}] - Twelve strings representing the names
of the twelve months.

• ’standinMonth=’ [numeric | ’last’ | 1] - Month that will represent a lower-than-monthly-
frequency date if the month is part of the date format string.

• ’wwDay=’ [’Mon’ | ’Tue’ | ’Wed’ | ’Thu’ | ’Fri’ | ’Sat’ | ’Sun’] - Day of week that will
represent weeks.

Description

There are two types of date strings in IRIS: year-period strings and calendar date strings. The
year-period strings can be printed for dates with yearly, half-yearly, quarterly, bimonthly, monthly,
weekly, and indeterminate frequencies. The calendar date strings can be printed for dates with
weekly and daily frequencies. Date formats for calendar date strings must start with a dollar sign,
$.

Year-period date strings

Regular date formats can include any combination of the following fields:

• ’Y’ - Year.

• ’YYYY’ - Four-digit year.

• ’YY’ - Two-digit year.

• ’P’ - Period within the year (half-year, quarter, bi-month, month, week).

• ’PP’ - Two-digit period within the year.

• ’R’ - Upper-case roman numeral for the period within the year.

• ’r’ - Lower-case roman numeral for the period within the year.

• ’M’ - Month numeral.

• ’MM’ - Two-digit month numeral.

281

Dates and Date Ranges: dat2str

• ’MMMM’, ’Mmmm’, ’mmmm’ - Case-sensitive name of month.

• ’MMM’, ’Mmm’, ’mmm’ - Case-sensitive three-letter abbreviation of month.

• ’Q’ - Upper-case roman numeral for the month or stand-in month.

• ’q’ - Lower-case roman numeral for the month or stand-in month.

• ’F’ - Upper-case letter representing the date frequency.

• ’f’ - Lower-case letter representing the date frequency.

• ’EE’ - Two-digit end-of-month day; stand-in month used for non-monthly dates.

• ’E’ - End-of-month day; stand-in month used for non-monthly dates.

• ’WW’ - Two-digit end-of-month workday; stand-in month used for non-monthly dates.

• ’W’ - End-of-month workday; stand-in month used for non-monthly dates.

Calendar date strings

Calendar date formats must start with a dollar sign, $, and can include any combination of the
following fields:

• ’Y’ - Year.

• ’YYYY’ - Four-digit year.

• ’YY’ - Two-digit year.

• ’DD’ - Two-digit day numeral; daily and weekly dates only.

• ’D’ - Day numeral; daily and weekly dates only.

• ’M’ - Month numeral.

• ’MM’ - Two-digit month numeral.

• ’MMMM’, ’Mmmm’, ’mmmm’ - Case-sensitive name of month.

• ’MMM’, ’Mmm’, ’mmm’ - Case-sensitive three-letter abbreviation of month.

• ’Q’ - Upper-case roman numeral for the month.

• ’q’ - Lower-case roman numeral for the month.

• ’DD’ - Two-digit day numeral.

• ’D’ - Day numeral.

• ’Aaa’, ’AAA’ - Three-letter English name of the day of week (’Mon’, . . . , ’Sun’).

282

Dates and Date Ranges: dat2ttrend

Escaping control letters

To get the format letters printed literally in the date string, use a percent sign as an escape character:
’%Y’, ’%P’, ’%F’, ’%f’, ’%M’, ’%m’, ’%R’, ’%r’, ’%Q’, ’%q’, ’%D’, ’%E’, ’%D’.

Example

dat2ttrend
Construct linear time trend from date range

Syntax

[TTrend,BaseDate] = dat2ttrend(Range)

[TTrend,BaseDate] = dat2ttrend(Range,BaseYear)

[TTrend,BaseDate] = dat2ttrend(Range,Obj)

Input arguments

• Range [numeric] - Date range from which an integer linear time trend will be constructed.

• BaseYear [model | VAR] - Base year that will be used to construct the time trend.

• Obj [model | VAR] - Model or VAR object whose base year will be used to construct the
time trend; if both BaseYear and Obj are omitted, the base year from irisget(’baseYear’)

will be used.

Output arguments

• TTrend [numeric] - Integer linear time trend, unique to the input date range Range and the
base year.

• BaseDate [numeric] - Base date used to normalize the input date range; see Description.

Description

For regular date frequencies, the time trend is constructed the following way. First, a base date is
created first period in the base year of a given frequency. For instance, for a quarterly input range,

283

Dates and Date Ranges: datbom

BaseDate = qq(baseYear,1), for a monthly input range, BaseDate == mm(baseYear,1), etc. Then,
the output trend is an integer vector normalized to the base date,

TTrend = floor(Range - BaseDate);

For indeterminate date frequencies, BaseDate = 0, and the output time trend is simply the input
date range.

Example

dat2ypf
Convert IRIS serial date number to year, period and frequency

Syntax

[Y,P,F] = dat2ypf(Dat)

Input arguments

• Dat [numeric] - IRIS serial date numbers.

Output arguments

• Y [numeric] - Years.

• P [numeric] - Periods within year.

• F [numeric] - Date frequencies.

Description

Example

284

Dates and Date Ranges: datboq

datbom
Beginning of month for the specified daily date

Syntax

Bom = datebom(D)

Input arguments

• D [numeric] - Daily serial date number.

Output arguments

• Bom [numeric] - Daily serial date number for the first day of the same month as D.

Description

Example

datboq
Beginning of quarter for the specified daily date

Syntax

Boq = datboq(D)

Input arguments

• D [numeric] - Daily serial date number.

Output arguments

• Boq [numeric] - Daily serial date number for the first day of the same quarter as D.

285

Dates and Date Ranges: datcmp

Description

Example

datboy
Beginning of year for the specified daily date

Syntax

Boy = dateboy(D)

Input arguments

• D [numeric] - Daily serial date number.

Output arguments

• Boy [numeric] - Daily serial date number for the first day of the same year as D.

Description

Example

datcmp
Compare two IRIS serial date numbers

Syntax

Flag = datcmp(Dat1,Dat2)

Input arguments

• Dat1, Dat2 [numeric] - IRIS serial date numbers or vectors.

286

Dates and Date Ranges: datdiff

Output arguments

• Flag [true | false] - True for numbers that represent the same date.

Description

The two date vectors must either be the same lengths, or one of them must be scalar.

Use this function instead of the plain comparison operator, ==, to compare dates. The plain
comparision can sometimes give false results because of round-off errors.

Example

d1 = qq(2010,1);

d2 = qq(2009,1):qq(2010,4);

datcmp(d1,d2)

ans =

0 0 0 0 1 0 0 0

datdiff
Number of periods between two dates with check for date frequency

Syntax

D = datdiff(D1,D2)

Input arguments

• D1, D2 [numeric] - IRIS dates of vectors of IRIS dates.

Output arguments

• D [numeric] - Number of periods between D1 and D2, positive for D1 greater than D2, negative
for D1 smaller than D2, or NaN for dates of different frequencies.

287

Dates and Date Ranges: dateom

Description

Example

d1 = mm(2010,12);

d2 = mm(2011,12);

datdiff(d1,d2)

ans =

-12

datdiff(d2,d1)

ans =

12

d3 = yy(2011);

datdiff(d1,d3)

ans =

NaN

dateom
End of month for the specified daily date

Syntax

Eom = dateom(D)

Input arguments

• D [numeric] - Daily serial date number.

Output arguments

• Eom [numeric] - Daily serial date number for the last day of the same month as D.

288

Dates and Date Ranges: dateoy

Description

Example

dateoq
End of quarter for the specified daily date

Syntax

Eoq = dateoq(D)

Input arguments

• D [numeric] - Daily serial date number.

Output arguments

• Eoq [numeric] - Daily serial date number for the last day of the same quarter as D.

Description

Example

dateoy
End of year for the specified daily date

Syntax

Eoy = dateoy(D)

Input arguments

• D [numeric] - Daily serial date number.

289

Dates and Date Ranges: datrange

Output arguments

• Eoy [numeric] - Daily serial date number for the last day of the same year as D.

Description

Example

datrange
Numerically safe way to create a date range

Syntax

Rng = datrange(Start,End)

Rng = datrange(Start,End,Step)

Input arguments

• Start [numeric] - Start date of the range.

• End [numeric] - End date of the range.

• Step [numeric] - Step size in the number of base periods; if omitted, Step = 1.

Output arguments

• Rng [numeric] - Date vector Start : Step : End.

Description

Most of the time, using a colon operator to create a date range works fine,

Start : Step : End

Under some (rather rare) circumstances, the colon operator may give incorrect results caused by
rounding error difficulties since IRIS serial date numbers are non-integer values. In that case, the
function datrange provides a safe workaround:

290

Dates and Date Ranges: datxtick

datrange(Start,End,Step)

is equivalent (but numerically safer) to

Start : Step : End

Example

The date ranges created in this example are identical, and no numerical inaccuracies exist:

r1 = qq(2000,1) : qq(2010,4);

r2 = datrange(qq(2000,1),qq(2010,4));

format long

r1 - r2

datxtick
Change ticks, labels and/or date frequency on x-axis in existing tseries graphs

Syntax

datxtick(Range,...)

datxtick(Ax,Range,...)

Input arguments

• Ax [numeric] - Handle to the axes object where the changes will be made; if not specified,
the current axes object, gca(), is changed.

• Range [numeric] - New date range to which the x-axis will be changed.

Options

• ’datePosition=’ [’start’ | ’centre’ | ’end’] - Where within each given period the date
tick will be placed (at the beginning of the period, in the middle of the period, or at the end
of the period).

291

Dates and Date Ranges: daysinyear

• ’dateTicks=’ [numeric | Inf] - Individual date ticks; if Inf, the ticks will be determined
automatically using the standard Matlab algorithm.

See dat2str P280 for date formatting options available.

-IRIS Toolbox. -Copyright (c) 2007-2015 IRIS Solutions Team.

Description

Example

Create a graph plotting a quarterly series, and then change the ticks and labels on the x-axis to
monthly:

x = tseries(qq(2010,1):qq(2011,4),@rand);

plot(x);

datxtick(mm(2010,1):mm(2011,12),’dateFormat=’,’Mmm YYYY’);

daysinyear
Number of days in year

Syntax

N = daysinyear(Year)

Input arguments

• Year [numeric] - Year.

Output arguments

• N [numeric] - Number of days in Year.

Description

N is 365 for non-leap years, and 366 for leap years. Leap years are either years divisible by 4 but
not 100, or years divisible by 400.

292

Dates and Date Ranges: dd

Example

daysinyear([2000,2200])

ans =

366 365

dd
Matlab serial date numbers that can be used to construct daily tseries objects

Syntax

Dat = dd(Year,Month,Day)

Dat = dd(Year,Month,’end’)

Dat = dd(Year,Month)

Dat = dd(Year)

Output arguments

• Dat [numeric] - IRIS serial date numbers.

Input arguments

• Year [numeric] - Year.

• Month [numeric | char | cellstr] - Calendar month in year; if missing, Month is 1 by default;
Month can be also specified as a three-letter English abbreviation: ’Jan’, ’Feb’, . . . ’Dec’.

• Day [numeric] - Calendar day in month; if missing, Day is 1 by default; ’end’ means the end
day of the respective month.

Description

Example

>> d = dd(2010,12,3)

d =

734475

293

Dates and Date Ranges: dec2dat

>> dat2str(d)

ans =

’2010-Dec-03’

ddtoday
Matlab serial date number for today’s date

Syntax

Dat = ddtoday()

Output arguments

• Dat [numeric] - Matlab serial date number for today’s date.

Description

Example

dec2dat
Convert decimal representation of date to IRIS serial date number

Syntax

Dat = dec2dat(Dec,Freq)

Input arguments

• Dec [numeric] - Decimal numbers representing dates.

• Freq [freq] - Date frequency.

294

Dates and Date Ranges: hhtoday

Output arguments

• Dat [numeric] - IRIS serial date numbers corresponding to the decimal representations Dec.

Description

Example

hh
IRIS serial date number for half-yearly date

Syntax

Dat = hh(Y)

Dat = hh(Y,H)

Input arguments

• Y [numeric] - Year.

• H [numeric] - Half-year; if missing, first half-year (January to June) is assumed.

Output arguments

• Dat [numeric] - IRIS serial date numbers representing the half-yearly date.

Description

Example

hhtoday
IRIS serial date number for current half-year

295

Dates and Date Ranges: mmtoday

Syntax

Dat = hhtoday()

Output arguments

• Dat [numeric] - IRIS serial date number for current half-year.

Description

Example

mm
IRIS serial date number for monthly date

Syntax

Dat = mm(Y)

Dat = mm(Y,M)

Input arguments

• Y [numeric] - Year.

• M [numeric] - Month; if omitted, first month (January) is assumed.

Output arguments

• Dat [numeric] - IRIS serial date number representing the monthly date.

Description

Example

296

Dates and Date Ranges: qq

mmtoday
IRIS serial date number for current month

Syntax

Dat = mmtoday()

Output arguments

• Dat [numeric] - IRIS serial date number for current month.

Description

Example

qq
IRIS serial date number for quarterly date

Syntax

Dat = qq(Y)

Dat = qq(Y,Q)

Input arguments

• Y [numeric] - Year.

• Q [numeric] - Quarter; if omitted, first quarter is assumed.

Output arguments

• Dat [numeric] - IRIS serial date number representing the quarterly date.

297

Dates and Date Ranges: rngcmp

Description

Example

qqtoday
IRIS serial date number for current quarter

Syntax

Dat = qqtoday()

Output arguments

• Dat [numeric] - IRIS serial date number for current quarter.

Description

Example

rngcmp
Compare two IRIS date ranges

Syntax

Flag = rngcmp(R1,R2)

Input arguments

• R1, R2 [numeric] - Two IRIS date ranges that will be compared.

Output arguments

• Flag [true | false] - True if the two date ranges are the same.

298

Dates and Date Ranges: str2dat

Description

An IRIS date range is distinct from a vector of dates in that only the first and the last dates matter.
Often, date ranges are context sensitive. In that case, you can use -Inf for the start date (meaning
the earliest possible date in the given context) and Inf for the end date (meaning the latest possible
date in the given context), or simply Inf for the whole range (meaning from the earliest possible
date to the latest possible date in the given context).

Example

r1 = qq(2010,1):qq(2020,4);

r2 = [qq(2010,1),qq(2020,4)];

rngcmp(r1,r2)

ans =

1

str2dat
Convert strings to IRIS serial date numbers

Syntax

Dat = str2dat(S,...)

Input arguments

• S [char | cellstr] - Strings representing dates.

Output arguments

• Dat [numeric] - IRIS serial date numbers.

Options

• ’freq=’ [1 | 2 | 4 | 6 | 12 | 52 | 365 | empty] - Enforce frequency.

See help on dat2str P280 for other options available.

299

Dates and Date Ranges: textinp2dat

Description

Example

d = str2dat(’04-2010’,’dateFormat=’,’MM-YYYY’);

dat2str(d)

ans =

’2010M04’

d = str2dat(’04-2010’,’dateFormat=’,’MM-YYYY’,’freq=’,4);

dat2str(d)

ans =

’2010Q2’

textinp2dat
Convert text input to IRIS serial date numbers

Syntax

Dat = textinp2dat(Str)

Input arguments

• Str [char] - String describing a date, a vector of dates, or a range; see Description.

Output arguments

• Dat [numeric] - IRIS serial date numbers representing the input date, vector of dates, or
range.

Description

Input text strings can contain dates in the basic format, for instance 2010Y for yearly dates, 2010H1
for half-yearly dates, 2010Q2 for quarterly dates, 2010B6 for bi-monthly dates, 2010M09 for monthly
dates, 2010W52 for weekly dates, or 2010-May-30 for daily dates. Each occurrence of a date will
be replaced with a call to the respective IRIS date function, yy(...), hh(...), qq(...), bb(...),
mm(...), ww(...), or dd(...), and the resulting expression will be evaluated, converting it into a
vector of IRIS serial date numbers.

300

Dates and Date Ranges: weeksinyear

Example

>> textinp2dat(’2010Q1:2011Q4’)

ans =

1.0e+03 *

Columns 1 through 7

8.0400 8.0410 8.0420 8.0430 8.0440 8.0450 8.0460

Column 8

8.0470

>> dat2str(textinp2dat(’2010Q1:2011Q4’))

ans =

Columns 1 through 6

’2010Q1’ ’2010Q2’ ’2010Q3’ ’2010Q4’ ’2011Q1’ ’2011Q2’

Columns 7 through 8

’2011Q3’ ’2011Q4’

weeksinyear
Number of weeks in year

Syntax

N = weeksinyear(Year)

Input arguments

• Year [numeric] - Year.

Output arguments

• N [numeric] - Number of weeks in Year.

Description

The number of weeks in a year is either 52 or 53, and complies with the definition of the first week
in a year in ISO 8601. The first week of a year is the one that contains the 4th day of January (in
other words, has most of its days in that year).

301

Dates and Date Ranges: ww2day

Example

weeksinyear(2000:2010)

ans =

52 52 52 52 53 52 52 52 52 53 52

ww
IRIS serial date number for weekly date

Syntax

Dat = ww(Year,Week)

Dat = ww(Year,Month,Day)

Input arguments

• Year [numeric] - Years.

• Week [numeric] - Week of the year.

• Month [numeric] - Calendar month.

• Day [numeric] - Calendar day of the month Month.

Output arguments

• Dat [numeric] - IRIS serial date number representing the weekly date.

Description

The IRIS weekly dates comply with the ISO 8601 definition:

• every week starts on Monday and ends on Sunday;

• the month or year to which the week belongs is determined by its Thurdsay.

302

Dates and Date Ranges: ww2day

Example

ww2day
Convert weekly IRIS serial date number to Matlab serial date number

Syntax

Day = ww2day(Dat)

Day = ww2day(Dat,WDay)

Input arguments

• Dat [numeric] - IRIS serial number for weekly date.

• WDay [’Mon’ | ’Tue’ | ’Wed’ | ’Thu’ | ’Fri’ | ’Sat’ | ’Sun’] - The day of the week that will
represent the input week, Dat; if omitted, the week will be represented by its Thursday.

Output arguments

• Day [numeric] - Matlab serial date number representing Thursday in that week.

Description

Example

The first week of the year 2009 starts on Monday, 29 December 2008 (it is the first week of 2009
by ISO 8601 definition, because Thursday of that week falls in 2009).

The following command returns the Thursday of that week (note that datestr is a standard Matlab
function, not an IRIS function),

firstWeek09 = ww(2009,1);

datestr(ww2day(firstWeek09))

ans =

01-Jan-2009

while this command returns the Monday of the same week,

303

Dates and Date Ranges: yy

datestr(ww2day(firstWeek09,’Monday’))

ans =

29-Dec-2008

wwtoday
IRIS serial date number for current week

Syntax

Dat = wwtoday()

Output arguments

• Dat [numeric] - IRIS serial date number for current week.

Description

Example

yy
IRIS serial date number for yearly date

Syntax

Dat = yy(Y)

Input arguments

• Y [numeric] - Year.

Output arguments

• Dat [numeric] - IRIS serial date numbers representing the yearly date.

304

Dates and Date Ranges: yytoday

Description

Example

yytoday
IRIS serial date number for current year

Syntax

Dat = yytoday()

Output arguments

• Dat [numeric] - IRIS serial date number for current year.

Description

Example

305

Time Series (tseries Objects)

18 Time Series (tseries Objects)

tseries methods:

Constructor

• tseries P372 - Create new time series (tseries) object.

Getting information about tseries objects

• enddate P330 - Date of the last available observation in a tseries object.
• freq P335 - Date frequency of tseries object.
• get P335 - Query tseries object property.
• isequal P341 - [Not a public function] Compare two tseries objects.
• length P342 - Length of tseries object.
• ndims P347 - Number of dimensions in tseries object data.
• size P363 - Size of tseries object data.
• specrange P365 - Time series specific range.
• startdate P367 - Date of the first available observation in a tseries object.
• yearly P379 - Display tseries object one calendar year per row.

Referencing tseries objects

• subsasgn P370 - Subscripted assignment for tseries objects.
• subsref P371 - Subscripted reference function for tseries objects.

Maths and statistics functions and operators

Some of the following functions require the Statistics Toolbox.

+, -, *, \, /, ˆ, &, |, ~, ==, ~=, >=, >, <, <=, abs, acos, asin, atan, atan2, ceil, cos, exp, fix,
floor,imag, isinf, isnan, log, log10, real, round, sin, sqrt, tan, normpdf, normcdf, prctile,
lognpdf, logncdf

The behaviour of the following functions depend on the dimension along which they are performed.

Some of the following functions require the Statistics Toolbox.

all, any, cumprod, cumsum, find, geomean, max, mean, median, min, mode, nanmean, nanstd, nansum,
nanvar, prod, std, sum, var

306

Time Series (tseries Objects)

Filters and evaluation

• arf P311 - Run autoregressive function on time series.
• arma P312 - Apply ARMA model to input series.
• bpass P318 - Band-pass filter.
• bwf P320 - Butterworth filter with tunes.
• bwf2 P320 - Swap output arguments of the Butterworth filter with tunes.
• detrend P327 - Remove a linear time trend.
• expsmooth P332 - Exponential smoothing.
• hpf P337 - Hodrick-Prescott filter with tunes (aka LRX filter).
• hpf2 P340 - Swap output arguments of the Hodrick-Prescott filter with tunes.
• fft P333 - Discrete Fourier transform of tseries object.
• llf P342 - Local level filter (aka random walk plus white noise) with tunes.
• llf2 P346 - Swap output arguments of the local linear trend filter with tunes.
• moving P346 - Apply function to moving window of observations.
• trend P371 - Estimate a time trend.
• x12 P375 - Access to X13-ARIMA-SEATS seasonal adjustment program.

Estimation and sample characteristics

Note that most of the sample characteristics are listed above in the Maths and statistics functions
and operators section.

• acf P309 - Sample autocovariance and autocorrelation functions.
• hpdi P336 - Highest probability density interval.
• chowlin P322 - Chow-Lin distribution of low-frequency observations over higher-frequency
periods.

• regress P356 - Ordinary or weighted least-square regression.

Visualising tseries objects

• area P310 - Area graph for tseries objects.
• band P314 - Line-and-band graph for tseries objects.
• bar P316 - Bar graph for tseries objects.
• barcon P317 - Contribution bar graph for tseries objects.
• errorbar P331 - Line plot with error bars.
• plot P350 - Line graph for tseries objects.
• plotcmp P351 - Comparison graph for two time series.
• plotpred P353 - Plot Kalman filter predictions.
• plotyy P354 - Line plot function with LHS and RHS axes for time series.

307

Time Series (tseries Objects)

• scatter P361 - Scatter graph for tseries objects.
• spy P367 - Visualise tseries observations that pass a test.
• stem P369 - Plot tseries as discrete sequence data.

Manipulating tseries objects

• empty P329 - Empty time series preserving the size in 2nd and higher dimensions.
• flipud P333 - Flip time series data up to down.
• permute P349 - Permute dimensions of a tseries object.
• repmat P358 - Repeat copies of time series data.
• redate P355 - Change time dimension of time series.
• reshape P358 - Reshape size of time series in 2nd and higher dimensions.
• resize P359 - Clip tseries object down to a specified date range.
• sort P364 - Sort tseries columns by specified criterion.

Converting tseries objects

• convert P323 - Convert tseries object to a different frequency.
• double P328 - Return tseries observations as double-precision numeric array.
• doubledata P329 - Convert tseries observations to double precision.
• single P362 - Return tseries observations as single-precision numeric array.
• singledata P363 - Convert tseries observations to single precision.

Other tseries functions

• apct P310 - Annualised percent rate of change.
• bsxfun P319 - Implement bsxfun for tseries class.
• cumsumk P325 - Cumulative sum with a k-period leap.
• destdise P326 - Destandardise tseries object by applying specified standard deviation and

mean to it.
• diff P328 - First difference.
• interp P341 - Interpolate missing observations.
• normalise P348 - Normalise (or rebase) data to particular date.
• pct P348 - Percent rate of change.
• round P360 - Round tseries values to specified number of decimals.
• rmse P360 - Compute RMSE for given observations and predictions.
• stdise P368 - Standardise tseries data by subtracting mean and dividing by std deviation.
• windex P373 - Simple weighted or Divisia index.
• wmean P374 - Weighted average of time series observations.

308

Time Series (tseries Objects): apct

Getting on-line help on tseries functions

help tseries

help tseries/function_name

acf
Sample autocovariance and autocorrelation functions

Syntax

[C,R] = acf(X)

[C,R] = acf(X,Dates,...)

Input arguments

• X [tseries] - Tseries object.

• Dates [numeric | Inf] - Dates or date range from which the input tseries data will be used.

Output arguments

• C [numeric] - Auto-/cross-covariance matrices.

• R [numeric] - Auto-/cross-correlation matrices.

Options

• ’demean=’ [true | false] - Remove mean from the data before computing the ACF.

• ’order=’ [numeric | 0] - Order up to which the ACF will be computed.

• ’smallSample=’ [true | false] - Adjust degrees of freedom for small samples.

Description

Example

309

Time Series (tseries Objects): area

apct
Annualised percent rate of change

Syntax

X = apct(X)

Input arguments

• X [tseries] - Input tseries object.

Output arguments

• X [tseries] - Annualised percentage rate of change in the input data.

Description

Example

area
Area graph for tseries objects

Syntax

[H,Range] = area(X,...)

[H,Range] = area(Range,X,...)

[H,Range] = area(Ax,Range,X,...)

Input arguments

• Ax [handle | numeric] - Handle to axes in which the graph will be plotted; if not specified,
the current axes will used.

• Range [numeric | char] - Date range; if not specified the entire range of the input tseries
object will be plotted.

• X [tseries] - Input tseries object whose columns will be ploted as an area graph.

310

Time Series (tseries Objects): arf

Output arguments

• H [handle | numeric] - Handles to areas plotted.

• Range [numeric] - Actually plotted date range.

Options

See help on tseries/plot P350 and the built-in function area for all options available.

Description

Example

arf
Run autoregressive function on time series

Syntax

X = arf(X,A,Z,Range,...)

Input arguments

• X [tseries] - Input data from which initial condition will be taken.

• A [numeric] - Vector of coefficients of the autoregressive polynomial.

• Z [numeric | tseries] - Exogenous input series or constant in the autoregressive process.

• Range [numeric | @all] - Date range on which the new time series observations will be
computed; Range does not include pre-sample initial condition. @allmeans the entire possible
range will be used (taking into account the length of pre-sample initial condition needed).

Output arguments

• X [tseries] - Output data with new observations created by running an autoregressive process
described by A and Z.

311

Time Series (tseries Objects): arma

Description

The autoregressive process has one of the following forms:

A1*x + A2*x(-1) + ... + An*x(-n) = z,

or

A1*x + A2*x(+1) + ... + An*x(+n) = z,

depending on whether the range is increasing (running forward in time), or decreasing (running
backward in time). The coefficients A1,. . . An are gathered in the input vector A,

A = [A1,A2,...,An].

Example

The following two lines create an autoregressive process constructed from normally distributed
residuals,

xt = �xt�1 + �t

rho = 0.8;

X = tseries(1:20,@randn);

X = arf(X,[1,-rho],X,2:20);

arma
Apply ARMA model to input series

Syntax

Y = arma(X,E,Ar,Ma,Range)

312

Time Series (tseries Objects): arma

Input arguments

• X [tseries] - Input time series from which initial condition will be constructed.

• E [tseries] - Input time series with innovations; NaN values in E on Range will be replaced
with 0.

• Ar [numeric | empty] - Row vector of AR polynominal coefficients; if empty, Ar = 1; see
Description.

• Ma [numeric | empty] - Row vector of MA polynominal coefficients; if empty, Ma = 1; see
Description.

• Range [numeric | char] - Range on which the output series observations will be constructed.

Output arguments

• X [tseries] - Output time series constructed by running an ARMA model on the input series
X and E; the output time series also includes p initial conditions where p is the order of the
AR polynomial.

Options

Description

The output series is constructed as follows:

A(L)Xt = M(L)Et

where A(L) = A0 + A1L + � � � and M(L) = M0 +M1L + � � � are polynomials in lag operator L
defined by the vectors Ar and Ma. In other words,

Xt =
1

A1
(�A2Xt�1 � A3Xt�2 � � � �+M0Et +M1Et�1 + � � �) :

Note that the coefficient A0 is Ar(1), A1 is Ar(2), and so on.

Example

Construct an AR(1) process with autoregression coefficient 0.8, built from normally distributed
innovations:

313

Time Series (tseries Objects): band

X = tseries(0:20,0);

E = tseries(1:20,@randn);

X = arma(X,E,[1,-0.8],[],1:20);

plot(X);

band
Line-and-band graph for tseries objects

Syntax

[Ln,Bd,Range] = band(X,Low,High...)

[Ln,Bd,Range] = band(Range,X,Low,High,...)

[Ln,Bd,Range] = band(Ax,Range,X,Low,High,...)

Input arguments

• Ax [numeric] - Handle to axes in which the graph will be plotted; if not specified, the current
axes will used.

• Range [numeric | char] - Date range; if not specified the entire range of the input time series
object will be plotted.

• X [tseries] - Input time series whose columns will be ploted as a line graph (referred to as
center lines).

• Low [tseries] - Time series that defines the lower edge of each band.

• High [tseries] - Time series that defines the upper edge of each band plotted.

Output arguments

• Ln [numeric] - Handles to lines plotted.

• Bd [numeric] - Handles to bands (patch objects) plotted.

• Range [numeric] - Date range actually plotted.

314

Time Series (tseries Objects): band

Options

• ’datePosition=’ [’centre’ | ’end’ | ’start’] - Position of each date point within a given
period span.

• ’dateTick=’ [numeric | Inf] - Vector of dates locating tick marks on the X-axis; Inf means
they will be created automatically.

• ’excludeFromLegend=’ [*true* | false] - Excluce bands from legend.

• ’grid=’ [’bottom’ | ’top’] - Place grid on top or bottom.

• ’relative=’ [true | false] - If true, the lower and upper edge will be constructed by
subtracting Low from X and adding High to X, respectively; otherwise, Low and High will be
interpreted as absolute positions of the edges.

• ’tight=’ [true | false] - Make the y-axis tight.

• ’white=’ [numeric | 0.85] - Percentage of white color mixed with the respective center line
color and used to fill the band area.

See help on built-in plot function for other options available.

Date format options

See dat2str P280 for details on date format options.

• ’dateFormat=’ [char | cellstr | ’YYYYFP’] - Date format string, or array of format strings
(possibly different for each date).

• ’freqLetters=’ [char | ’YHQBMW’] - Six letters used to represent the six possible frequencies
of IRIS dates, in this order: yearly, half-yearly, quarterly, bi-monthly, monthly, and weekly
(such as the ’Q’ in ’2010Q1’).

• ’months=’ [cellstr | {’January’,...,’December’}] - Twelve strings representing the names
of the twelve months.

• ’standinMonth=’ [numeric | ’last’ | 1] - Month that will represent a lower-than-monthly-
frequency date if the month is part of the date format string.

Description

If one (or more) of the input time series, X, Low, or High, consists of more than one column, the
graph is constructructed as follows:

315

Time Series (tseries Objects): bar

• One column in X, multiple columns in Low or High - multiple bands are plotted around a
single center line.

• Multiple columns in X, one column in Low or High - a single band is plotted around each of
the center lines, each band constructed from the same lower and upper edge data; this setup
makes sense only with the option ’relative=’ true.

• Multiple columns in X, mutliple columns in Low or High - a single band is plotted around each
of the center lines, each band constructed from different data.

Example

bar
Bar graph for tseries objects

Syntax

[H,Range] = bar(X,...)

[H,Range] = bar(Range,X,...)

[H,Range] = bar(Ax,Range,X,...)

Input arguments

• Ax [handle | numeric] - Handle to axes in which the graph will be plotted; if not specified,
the current axes will used.

• Range [numeric | char] - Date Range; if not specified the entire Range of the input tseries
object will be plotted.

• X [tseries] - Input tseries object whose columns will be ploted as a bar graph.

Output arguments

• H [handle | numeric] - Handles to bars plotted.

• Range [numeric] - Actually plotted date Range.

316

Time Series (tseries Objects): barcon

Options

See help on tseries/bar P316 and the built-in function bar for all options available.

Description

Example

barcon
Contribution bar graph for tseries objects

Syntax

[H,Range] = barcon(X,...)

[H,Range] = barcon(Range,X,...)

[H,Range] = barcon(Ax,Range,X,...)

Input arguments

• Ax [handle | numeric] - Handle to axes in which the graph will be plotted; if not specified,
the current axes will used.

• Range [numeric | char] - Date range; if not specified the entire range of the input tseries
object will be plotted.

• X [tseries] - Input tseries object whose columns will be ploted as a contribution bar graph.

Output arguments

• H [handle | numeric] - Handles to the bars plotted.

• Range [numeric] - Actually plotted date range.

Options

• ’barWidth=’ [numeric | 0.8] - Width of bars as a percentage of the space each period occupies
on the x-axis.

317

Time Series (tseries Objects): bpass

• ’dateFormat=’ [char | cellstr | ’YYYYFP’] - Date format string, or array of format strings
(possibly different for each date).

• ’colorMap=’ [numeric | get(gcf(),’colorMap’)] - Color map used to fill the contribution
bars.

• ’evenlySpread=’ [true | false] - Colors picked for the contribution bars are evenly spread
across the color map.

• ’ordering=’ [’ascend’ | ’descend’ | ’preserve’ | numeric] - Ordering of contributions with
the same sign withinin each period; ’preserve’ means the original order will be preserved.

See help on tseries/plot P350 and the built-in function bar for other options available.

Description

Example

bpass
Band-pass filter

Syntax

[X,T] = bpass(X,Band,Range,...)

Output arguments

• X [tseries] - Band-pass filtered tseries object.

• T [tseries] - Estimated trend tseries object.

Input arguments

• X [tseries] - Input tseries object that will be filtered.

• Range [numeric | Inf] Date range on which the data will be filtered.

• Band [numeric] - Band of periodicities to be retained in the output data, Band = [LOW,HIGH].

318

Time Series (tseries Objects): bsxfunc

Options

• ’addTrend=’ [true | false] - Add the estimated linear time trend back to filtered output
series if band includes Inf.

• ’detrend=’ [true | false] - Remove an estimated time trend from the data before filtering.

• ’log=’ [true | false] - Logarithmise the data before filtering, de-logarithmise afterwards.

• ’method=’ [’cf’ | ’hwfsf’] - Type of band-pass filter: Christiano-Fitzgerald, or h-windowed
frequency-selective filter.

• ’unitRoot=’ [true | false] - Assume unit root in the input data.

See help on tseries/trend P371 for other options available when ’detrend=’ is set to true.

Description

Christiano, L.J. and T.J.Fitzgerald (2003). The Band Pass Filter. International Economic Review,
44(2), 435–465.

Iacobucci, A. & A. Noullez (2005). A Frequency Selective Filter for Short-Length Time Series.
Computational Economics, 25, 75–102.

Example

bsxfunc
Implement bsxfun for tseries class

Syntax

Z = bsxfun(Func,X,Y)

Input arguments

• Func [function_handle] - Function that will be applied to the input series, FUN(X,Y).

• X [tseries | numeric] - Input time series or numeric array.

• Y [tseries | numeric] - Input time series or numeric array.

319

Time Series (tseries Objects): bwf

Output arguments

• Z [tseries] - Result of Func(X,Y) with X and/or Y expanded properly in singleton dimensions.

Description

See help on built-in bsxfun for more help.

Example

Create a multivariate time series and subtract mean from its individual columns.

x = tseries(1:10,rand(10,4));

xx = bsxfun(@minus,x,mean(x));

bwf
Swap output arguments of the Butterworth filter with tunes

See help on tseries/bwf P320 .

bwf
Butterworth filter with tunes

Syntax

Input arguments marked with a ~ (tilde) sign may be omitted.

[T,C,CutOff,Lambda] = bwf(X,Order,~Range,...)

Syntax with output arguments swapped

Input arguments marked with a ~ (tilde) sign may be omitted.

[T,C,CutOff,Lambda] = bwf2(X,Order,~Range,...)

320

Time Series (tseries Objects): bwf

Input arguments

• X [tseries] - Input tseries object that will be filtered.

• Order [numeric] - Order of the Butterworth filter; Order=2 reproduces the Hodrick-Prescott
filter hpf P337 , and Order=1 reproduces the local linear filter llf P342 .

• ~Range [numeric | char | @all] - Date range on which the input data will be filtered; Range can
be @all, Inf, [startdata,Inf], or [-Inf,enddate]; if omitted, @all (i.e. the entire available
range of the input series) is used.

Output arguments

• T [tseries] - Lower-frequency (trend) component.

• C [tseries] - Higher-frequency (cyclical) component.

• CutOff [numeric] - Cut-off periodicity; periodicities above the cut-off are attributed to trends,
periodicities below the cut-off are attributed to gaps.

• Lambda [numeric] - Smoothing parameter actually used; this output argument is useful when
the option ’CutOff=’ is used instead of ’Lambda=’.

Options

• ’CutOff=’ [numeric | empty] - Cut-off periodicity in periods (depending on the time series
frequency); this option can be specified instead of ’Lambda=’; the smoothing parameter will
be then determined based on the cut-off periodicity.

• ’CutOffYear=’ [numeric | empty] - Cut-off periodicity in years; this option can be specified
instead of ’Lambda=’; the smoothing parameter will be then determined based on the cut-off
periodicity.

’infoSet=’ [1 | 2] - Information set assumption used in the filter: 1 runs a one-sided filter, 2 runs
a two-sided filter.

• ’Lambda=’ [numeric | @auto] - Smoothing parameter; needs to be specified for tseries objects
with indeterminate frequency. See Description for default values.

• ’level=’ [tseries] - Time series with soft and hard tunes on the level of the trend.

• ’change=’ [tseries] - Time series with soft and hard tunes on the change in the trend.

• ’log=’ [true | false] - Logarithmise the data before filtering, de-logarithmise afterwards.

321

Time Series (tseries Objects): chowlin

Description

Default smoothing parameters

If the user does not specify the smoothing parameter using the ’lambda=’ option (or reassigns the
default @auto), a default value is used. The default value is based on common practice and can
be calculated using the date frequency of the input time series as � = (10 � f)n, where f is the
frequency (yearly=1, half-yearly=2, quarterly=4, bi-monthly=6, monthly=12), and n is the order
of the filter, determined by the input parameter Order.

Example

chowlin
Chow-Lin distribution of low-frequency observations over higher-frequency periods

Syntax

[Y2,B,RHO,U1,U2] = chowlin(Y1,X2)

[Y2,B,RHO,U1,U2] = chowlin(Y1,X2,Range,...)

Input arguments

• Y1 [tseries] - Low-frequency input time series that will be distributed over higher-frequency
observations.

• X2 [tseries] - Time series with regressors used to distribute the input data.

• Range [numeric] - Low-frequency date range on which the distribution will be computed.

Output arguments

• Y2 [tseries] - Output data distributed with higher frequency.

• B [numeric] - Vector of regression coefficients.

• RHO [numeric] - Actually used autocorrelation coefficient in the residuals.

• U1 [tseries] - Low-frequency regression residuals.

• U2 [tseries] - Higher-frequency regression residuals.

322

Time Series (tseries Objects): convert

Options

• ’constant=’ [true | false] - Include a constant term in the regression.

• ’log=’ [true | false] - Logarithmise the data before distribution, de-logarithmise afterwards.

• ’ngrid=’ [numeric | 200] - Number of grid search points for finding autocorrelation coefficient
for higher-frequency residuals.

• ’rho=’ [’estimate’ | ’positive’ | ’negative’ | numeric] - How to determine the autocor-
relation coefficient for higher-frequency residuals.

• ’timeTrend=’ [true | false] - Include a time trend in the regression.

Description

Chow,G.C., and A.Lin (1971). Best Linear Unbiased Interpolation, Distribution and Extrapolation
of Time Series by Related Times Series. Review of Economics and Statistics, 53, pp. 372-75.

See also Appendix 2 in Robertson, J.C., and E.W.Tallman (1999). Vector Autoregressions: Fore-
casting and Reality. FRB Atlanta Economic Review, 1st Quarter 1999, pp.4-17.

Example

convert
Convert tseries object to a different frequency

Syntax

Y = convert(X,NewFreq,...)

Y = convert(X,NewFreq,Range,...)

Input arguments

• X [tseries] - Input tseries object that will be converted to a new frequency, freq, aggregating
or intrapolating the data.

• NewFreq [numeric | char] - New frequency to which the input data will be converted: 1 or
’A’ for yearly, 2 or ’H’ for half-yearly, 4 or ’Q’ for quarterly, 6 or ’B’ for bi-monthly, and 12

or ’M’ for monthly.

323

Time Series (tseries Objects): convert

• Range [numeric] - Date range on which the input data will be converted.

Output arguments

• Y [tseries] - Output tseries created by converting X to the new frequency.

Options

• ’ignoreNaN=’ [true | false] - Exclude NaNs from agreggation.

• ’missing=’ [numeric | NaN | ’last’] - Replace missing observations with this value.

Options for high- to low-frequency conversion (aggregation)

• ’method=’ [function_handle | ’first’ | ’last’ | @mean] - Method that will be used to
aggregate the high frequency data.

• ’select=’ [numeric | Inf] - Select only these high-frequency observations within each low-
frequency period; Inf means all observations will be used.

Options for low- to high-frequency conversion (interpolation)

• ’method=’ [char | ’cubic’ | ’quadsum’ | ’quadavg’] - Interpolation method; any option
available in the built-in interp1 function can be used.

• ’position=’ [’centre’ | ’start’ | ’end’] - Position of the low-frequency date grid.

Description

The function handle that you pass in through the ‘method’ option when you aggregate the data
(convert higher frequency to lower frequency) should behave like the built-in functions mean, sum
etc. In other words, it is expected to accept two input arguments:

• the data to be aggregated,
• the dimension along which the aggregation is calculated.

The function will be called with the second input argument set to 1, as the data are processed
en block columnwise. If this call fails, convert will attempt to call the function with just one
input argument, the data, but this is not a safe option under some circumstances since dimension
mismatch may occur.

324

Time Series (tseries Objects): cumsumk

Example

cumsumk
Cumulative sum with a k-period leap

Syntax

Y = cumsumk(X,K,Rho,Range)

Y = cumsumk(X,K,Rho)

Y = cumsumk(X,K)

Y = cumsumk(X)

Input arguments

• X [tseries] - Input data.

• K [numeric] - Number of periods that will be leapt the cumulative sum will be taken; if
not specified, K is chosen to match the frequency of the input data (e.g. K = -4 for quarterly
data), or K = -1 for indeterminate frequency.

• Rho [numeric] - Autoregressive coefficient; if not specified, Rho = 1.

• Range [numeric] - Range on which the cumulative sum will be computed and the output
series returned.

Output arguments

• Y [tseries] - Output data constructed as described below.

Options

• ’log=’ [true | false] - Logarithmise the input data before, and de-logarithmise the output
data back after, running x12.

Description

If K < 0, the first K observations in the output series Y are copied from X, and the new observations
are given recursively by

325

Time Series (tseries Objects): destdise

Y{t} = Rho*Y{t-K} + X{t}.

If K > 0, the last K observations in the output series Y are copied from X, and the new observations
are given recursively by

Y{t} = Rho*Y{t+K} + X{t},

going backwards in time.

If K == 0, the input data are returned.

Example

Construct random data with seasonal pattern, and run X12 to seasonally adjust these series.

x = tseries(qq(1990,1):qq(2020,4),@randn);

x1 = cumsumk(x,-4,1);

x2 = cumsumk(x,-4,0.7);

x1sa = x12(x1);

x2sa = x12(x2);

The new series x1 will be a unit-root process while x2 will be stationary. Note that the command
on the second line could be replaced with x1 = cumsumk(x).

destdise
Destandardise tseries object by applying specified standard deviation and mean to
it

Syntax

X = destdise(X,XMean,XStd)

Input arguments

• X [tseries] - Input tseries object.

• XMean [numeric] - Mean that will be added the data.

• XStd [numeric] - Standard deviation that will be added to the data.

326

Time Series (tseries Objects): diff

Output arguments

• X [tseries] - Destandardised output data.

Description

Example

detrend
Remove a linear time trend

Syntax

X = detrend(X,...)

X = detrend(X,Range,...)

Input arguments

• X [tseries] - Input time series.

• Range [numeric | @all | char] - The date range on which the trend will be computed; @all
means the entire range available will be used.

Output arguments

• x [tseries] - Output time series with a trend removed.

Options

See tseries/trend P371 for options available.

Description

Example

327

Time Series (tseries Objects): double

diff
First difference

Syntax

X = diff(X)

X = diff(X,K)

Input arguments

• X [tseries] - Input tseries object.

• K [numeric] - Number of periods over which the first difference will be computed; Y = X -

X{K}. Note that K must be a negative number for the usual backward differencing. If not
specified, K will be set to -1.

Output arguments

• X [tseries] - First difference of the input data.

Description

Example

double
Return tseries observations as double-precision numeric array

Syntax

y = double(x)

Input arguments

• x [tseries] - Tseries object whose observations will be returned as double-precision numeric
array.

328

Time Series (tseries Objects): empty

Output arguments

• y [numeric] - Double-precision numeric array with the input tseries observations in columns.

Description

Example

doubledata
Convert tseries observations to double precision

Syntax

x = doubledata(x)

Input arguments

• x [tseries] - Tseries object whose observations will be be converted to double precision.

Output arguments

• y [numeric] - Tseries object with double-precision observations.

Description

Example

empty
Empty time series preserving the size in 2nd and higher dimensions

Syntax

x = empty(x)

329

Time Series (tseries Objects): enddate

Input arguments

• This [tseries] - Input time series that will be emptied.

Output arguments

• This [tseries] - Empty time series with the 2nd and higher dimensions the same size as the
input tseries object, and comments preserved.

Description

Example

enddate
Date of the last available observation in a tseries object

Syntax

D = enddate(X)

Input arguments

• X [tseries] - Tseries object.

Output arguments

• D [numeric] - IRIS serial date number representing the date of the last observation available
in the input tseries.

Description

The startdate function is equivalent to calling

get(x,’endDate’)

330

Time Series (tseries Objects): errorbar

Example

errorbar
Line plot with error bars

Syntax

[LL,EE,Range] = errorbar(X,W,...)

[LL,EE,Range] = errorbar(Range,X,W,...)

[LL,EE,Range] = errorbar(AA,Range,X,W,...)

[LL,EE,Range] = errorbar(X,Lo,Hi,...)

[LL,EE,Range] = errorbar(Range,X,Lo,Hi,...)

[LL,EE,Range] = errorbar(AA,Range,X,Lo,Hi,...)

Input arguments

• AA [numeric] - Handle to axes in which the graph will be plotted; if not specified, the current
axes will used.

• Range [numeric | char] - Date range; if not specified the entire range of the input tseries
object will be plotted.

• X [tseries] - Tseries object whose data will be plotted as a line graph.

• W [tseries] - Width of the bands that will be plotted around the lines.

• Lo [tseries] - Width of the band below the line.

• Hi [tseries] - Width of the band above the line.

Output arguments

• LL [numeric] - Handles to lines plotted.

• EE [numeric] - Handles to error bars plotted.

• Range [numeric] - Actually plotted date range.

331

Time Series (tseries Objects): fft

Options

• ’relative=’ [true | false] - If true, the data for the lower and upper bounds are relative
to the centre, i.e. the bounds will be added to the centre (in this case, Lo must be negative
numbers and Hi must be positive numbers). If false, the bounds are absolute data (in this
case Lo must be lower than X, and Hi must be higher than X).

See help on tseries/plot P350 .

ews
Exponential smoothing

Syntax

X = expsmooth(X,Beta,...)

Input arguments

• X [tseries] - Input time series.

• Beta [numeric] - Exponential factor.

Output arguments

• X [tseries] - Exponentially smoothed series.

Options

• ’init=’ [numeric | NaN] - Add this value before the first observation to initialise the smooth-
ing.

• ’log=’ [true | false] - Logarithmise the data before filtering, de-logarithmise afterwards.

Description

Examples

332

Time Series (tseries Objects): flipud

fft
Discrete Fourier transform of tseries object

Syntax

[y,range,freq,per] = fft(x)

[y,range,freq,per] = fft(x,range,...)

Input arguments

• x [tseries] - Input tseries object that will be transformed.

• range [numeric | Inf] - Date range.

Output arguments

• y [numeric] - Fourier transform with data organised in columns.

• range [numeric] - Actually used date range.

• freq [numeric] - Frequencies corresponding to FFT vector elements.

• per [numeric] - Periodicities corresponding to FFT vector elements.

Options

• ’full=’ [true | false] - Return Fourier transform on the whole interval [0,2*pi]; if false
only the interval [0,pi] is returned.

Description

Example

}

flipud
Flip time series data up to down

333

Time Series (tseries Objects): freq

Syntax

X = flipud(X)

Input arguments

• X [tseries] - Time series whose data will be flipped up to down.

Output arguments

• X [tseries] - Time series with its data flipped up to down.

Description

The data vector or matrix of the input time series is flipped up to down using the standard Matlab
function flipud, i.e. the rows of the data vector or matrix are reorganized from last to first.

Example

>> x = tseries(qq(2000,1):qq(2000,4),1:4)

x =

tseries object: 4-by-1

2000Q1: 1

2000Q2: 2

2000Q3: 3

2000Q4: 4

’’

user data: empty

export files: [0]

>> flipud(x)

ans =

tseries object: 4-by-1

2000Q1: 4

2000Q2: 3

2000Q3: 2

2000Q4: 1

’’

user data: empty

export files: [0]

334

Time Series (tseries Objects): get

freq
Date frequency of tseries object

Syntax

F = freq(X)

Input arguments

• X [tseries] - Input tseries object.

Output arguments

• F [0 | 1 | 2 | 4 | 6 | 12 | 52 | 365] - Date frequency of observations in the input tseries object;
F is the number of periods within a year.

Description

The freq() function is equivalent to calling the get() function:

get(x,’freq’)

Example

get
Query tseries object property

Syntax

Ans = get(X,Query)

[Ans,Ans,...] = get(X,Query,Query,...)

335

Time Series (tseries Objects): hpdi

Input arguments

• X [model] - Tseries object.

• Query [char] - Query to the tseries object.

Output arguments

• Ans [. . .] - Answer to the query.

Valid queries to tseries objects

• ’end=’ Returns [numeric] the date of the last observation.

• ’freq=’ Returns [numeric] the frequency (periodicity) of the time series.

• ’nanEnd=’ Returns [numeric] the last date at which observations are available in all columns;
for scalar tseries, this query always returns the same as ’end’.

• ’nanRange=’ Returns [numeric] the date range from ’nanstart’ to ’nanend’; for scalar time
series, this query always returns the same as ’range’.

• ’nanStart=’ Returns [numeric] the first date at which observations are available in all
columns; for scalar tseries, this query always returns the same as ’start’.

• ’range=’ Returns [numeric] the date range from the first observation to the last observation.

• ’start=’ Returns [numeric] the date of the first observation.

Description

hpdi
Highest probability density interval

Syntax

int = hpdi(x,prob)

336

Time Series (tseries Objects): hpf

Input arguments

• x [tseries] - Input data with random draws in each period.

• prob [numeric] - Percent coverage of the computed interval, between 0 and 100.

Output arguments

• int [tseries] - Output tseries object with two columns, i.e. lower bounds and upper bounds
for each period.

Description

Example

hpf
Hodrick-Prescott filter with tunes (aka LRX filter)

Syntax

Input arguments marked with a ~ (tilde) sign may be omitted.

[T,C,CutOff,Lambda] = hpf(X,~Range,...)

Syntax with output arguments swapped

Input arguments marked with a ~ (tilde) sign may be omitted.

[C,T,CutOff,Lambda] = hpf2(X,~Range,...)

Input arguments

• X [tseries] - Input tseries object that will be filtered.

• ~Range [numeric | char | @all] - Date range on which the input data will be filtered; Range can
be @all, Inf, [startdata,Inf], or [-Inf,enddate]; if omitted, @all (i.e. the entire available
range of the input series) is used.

337

Time Series (tseries Objects): hpf

Output arguments

• T [tseries] - Low-frequency (trend) component.

• C [tseries] - High-frequency (cyclical or gap) component.

• CutOff [numeric] - Cut-off periodicity; periodicities above the cut-off are attributed to trends,
periodicities below the cut-off are attributed to gaps.

• Lambda [numeric] - Smoothing parameter actually used; this output argument is useful when
the option ’cutoff=’ is used instead of ’lambda=’.

Options

• ’cutoff=’ [numeric | empty] - Cut-off periodicity in periods (depending on the time series
frequency); this option can be specified instead of ’lambda=’; the smoothing parameter will
be then determined based on the cut-off periodicity.

• ’cutoffYear=’ [numeric | empty] - Cut-off periodicity in years; this option can be specified
instead of ’lambda=’; the smoothing parameter will be then determined based on the cut-off
periodicity.

• ’gamma=’ [numeric | tseries | 1] - Weight or weights on the deviations of the trend from
observations; it only makes sense to use this option to make the signal-to-noise ratio time-
varying; see the optimisation problem below.

’infoSet=’ [1 | 2] - Information set assumption used in the filter: 1 runs a one-sided filter, 2 runs
a two-sided filter.

• ’lambda=’ [numeric | @auto] - Smoothing parameter; needs to be specified for tseries objects
with indeterminate frequency. See Description for default values.

• ’level=’ [tseries] - Time series with hard tunes and soft tunes on the level of the trend.

• ’change=’ [tseries] - Time series with hard tunes and soft tunes on the change in the trend.

• ’log=’ [true | false] - Logarithmise the data before filtering, de-logarithmise afterwards.

Description

The underlying optimisation problem

The function hpf solves a constrained optimisation problem described by the following Lagrangian

338

Time Series (tseries Objects): hpf

min
�yt;!t;�t

P
� (��yt ���yt�1)

2
+
P

t (�yt � yt)
2

| {z }
Plain HP with time-varying signal-to-noise ratio

+ � � �

� � �+
P

ut (�yt � at)
2

| {z }
Soft level tunes

+
P

vt (��yt � bt)
2

| {z }
Soft growth tunes

+
P

!t (�yt � ct)| {z }
Hard level tunes

+
P

�t (��yt � dt)| {z }
Hard growth tunes

;

where

• � is the first-difference operator;
• � is a (scalar) smoothing parameter;
• yt are user-supplied observations;
• �yt is the fitted trend;
• t are user-supplied weights to modify the basic signal-to-noise ratio over time (the default
setting is t = 1), entered in the option ’gamma=’;

• at and ut are soft tunes on the level of the trend and the weights associated with these soft
level tunes, respectively, entered together as complex numbers in the option ’level=’;

• bt and vt are soft tunes on the change in the level of the trend and the weights associated
with these soft growth tunes, respectively, entered together as complex numbers in the option
’growth=’;

• ct are hard tunes on the level of the trend, entered as real numbers in the option ’level=’;
• dt are hard tunes on the change in the level of the trend, entered as real numbers in the
option ’growth=’;

• !t are lagRange multipliers on the hard level tunes (note that these are computed as part of
the optimisation problem, not entered by the user);

• �t are lagRange multipliers on the hard growth tunes (note that these are computed as part
of the optimisation problem, not entered by the user).

Each of the summations in the above Lagrangian goes over those periods in which the respective
bracketed terms are defined (observations or tunes exist). You can combine any number of any
tunes in one run of hpf, including out-of-sample tunes (see below).

How to enter the tunes

• The hard tunes and soft tunes on the level of the trend are entered as time series through the
option ’level=’.

• The hard tunes and soft tunes on the change in the trend are entered as time series through
the option ’change=’.

• In the tseries objects entered through ’level=’ and/or ’change=’, you can combine any
number of hard and soft tune. In each particular period, you can obviously specify only a

339

Time Series (tseries Objects): interp

hard tune or only a soft tune. You can think of hard tunes as a special case of soft tunes with
infinitely large weights.

• A hard tune is specified as a plain real number (i.e. a number with a zero complex part).

• A soft tune must be entered as a complex number whose real part specifies the tune itself,
and the imaginary part specifies the inverse of the weight, i.e. 1=vt or 1=ut, on that tune in
that period. Note that if the weight goes to infinity, the imaginary part becomes zero and
the tune becomes a hard tune.

Out-of-sample tunes

Tunes can be imposed also at dates before the first observation of the input series, or after the
last observation. In other words, the time series in ’level=’ and/or ’growth=’ can have a more
extended Range (at either side) than the filtered input series.

Default smoothing parameters

If the user does not specify the smoothing parameter using the ’lambda=’ option (or reassigns
the default @auto), a default value is used. The default value is based on common practice and
can be calculated using the date frequency of the input time series as � = 100 � f2, where f is
the frequency (yearly=1, half-yearly=2, quarterly=4, bi-monthly=6, monthly=12). This gives the
following default values:

• 100 for yearly time series (cut-off periodicity of 19.79 years);
• 400 for half-yearly time series (cut-off periodicity of 14.02 years);
• 1,600 for quarterly time series (cut-off periodicity of 9.92 years);
• 3,600 for bi-monthly time series (cut-off periodicity of 8.11 years);
• 14,400 for monthly time series (cut-off periodicity of 5.73 years).

Note that there is no default value for data with indeterminate or daily frequency: for these types
of time series, you must always use the option “lambda=”.

Example

hpf2
Swap output arguments of the Hodrick-Prescott filter with tunes

See help on tseries/hpf P337 .

340

Time Series (tseries Objects): isequal

interp
Interpolate missing observations

Syntax

X = interp(X,Range,...)

Input arguments

• X [tseries] - Input time series.

• Range [numeric | char] - Date range on which any missing observations (NaN) will be inter-
polated.

Output arguments

• x [tseries] - Tseries object with the missing observations interpolated.

Options

• ’method=’ [char | ’cubic’] - Any valid method accepted by the built-in interp1 function.

Description

Example

isequal
[Not a public function] Compare two tseries objects

Syntax

Flag = isequal(X1,X2)

Input arguments

• X1, X2 [tseries] - Two tseries objects that will be compared.

341

Time Series (tseries Objects): llf

Output arguments

• Flag [true | false] - True if the two input tseries objects have identical contents: start date,
data, comments, userdata, and captions.

Description

The function isequaln is used to compare the tseries data, i.e. NaNs are correctly matched.

Example

length
Length of tseries object

Syntax

n = length(x)

Input arguments

• x [tseries] Tseries object.

Output arguments

• n [numeric] - Number of periods from the first to the last available observation in the input
tseries object.

Description

Example

llf
Local level filter (aka random walk plus white noise) with tunes

342

Time Series (tseries Objects): llf

Syntax

Input arguments marked with a ~ (tilde) sign may be omitted.

[T,C,CutOff,Lambda] = llf(X,~Range,...)

Syntax with output arguments swapped

Input arguments marked with a ~ (tilde) sign may be omitted.

[C,T,CutOff,Lambda] = llf2(X,~Range,...)

Input arguments

• X [tseries] - Input tseries object that will be filtered.

• ~Range [numeric | char | @all] - Date range on which the input data will be filtered; Range can
be @all, Inf, [startdata,Inf], or [-Inf,enddate]; if omitted, @all (i.e. the entire available
range of the input series) is used.

Output arguments

• T [tseries] - Low-frequency (trend) component.

• C [tseries] - High-frequency (cyclical or gap) component.

• CutOff [numeric] - Cut-off periodicity; periodicities above the cut-off are attributed to trends,
periodicities below the cut-off are attributed to gaps.

• Lambda [numeric] - Smoothing parameter actually used; this output argument is useful when
the option ’cutoff=’ is used instead of ’lambda=’.

Options

• ’cutoff=’ [numeric | empty] - Cut-off periodicity in periods (depending on the time series
frequency); this option can be specified instead of ’lambda=’; the smoothing parameter will
be then determined based on the cut-off periodicity.

• ’cutoffYear=’ [numeric | empty] - Cut-off periodicity in years; this option can be specified
instead of ’lambda=’; the smoothing parameter will be then determined based on the cut-off
periodicity.

343

Time Series (tseries Objects): llf

• ’gamma=’ [numeric | tseries | 1] - Weight or weights on the deviations of the trend from
observations; it only makes sense to use this option to make the signal-to-noise ratio time-
varying; see the optimisation problem below.

• ’drift=’ [numeric | tseries | 0] - Deterministic drift in the trend.

’infoSet=’ [1 | 2] - Information set assumption used in the filter: 1 runs a one-sided filter, 2 runs
a two-sided filter.

• ’lambda=’ [numeric | @auto] - Smoothing parameter; needs to be specified for tseries objects
with indeterminate frequency. See Description for default values.

• ’level=’ [tseries] - Time series with soft and hard tunes on the level of the trend.

• ’change=’ [tseries] - Time series with soft and hard tunes on the change in the trend.

• ’log=’ [true | false] - Logarithmise the data before filtering, de-logarithmise afterwards.

Description

The underlying optimisation problem

The function llf solves a constrained optimisation problem described by the following Lagrangian

min
�yt;!t;�t

P
� (��yt � �t)

2
+
P

t (�yt � yt)
2

| {z }
Plain local level filter with time-varying signal-to-noise ratio

+ � � �

� � �+
P

ut (�yt � at)
2

| {z }
Soft level tunes

+
P

vt (��yt � bt)
2

| {z }
Soft growth tunes

+
P

!t (�yt � ct)| {z }
Hard level tunes

+
P

�t (��yt � dt)| {z }
Hard growth tunes

;

where

• � is the first-difference operator;
• � is a (scalar) smoothing parameter;
• yt are user-supplied observations;
• �yt is the fitted trend;
• �t is a user-supplied drift, either constant or time-varying, enetered in the option ’drift=’;
• t are user-supplied weights to modify the basic signal-to-noise ratio over time (the default
setting is t = 1), entered in the option ’gamma=’;

• at and ut are soft tunes on the level of the trend and the weights associated with these soft
level tunes, respectively, entered together as complex numbers in the option ’level=’;

344

Time Series (tseries Objects): llf

• bt and vt are soft tunes on the change in the level of the trend and the weights associated
with these soft growth tunes, respectively, entered together as complex numbers in the option
’growth=’;

• ct are hard tunes on the level of the trend, entered as real numbers in the option ’level=’;
• dt are hard tunes on the change in the level of the trend, entered as real numbers in the

option ’growth=’;
• !t are lagrange multipliers on the hard level tunes (note that these are computed as part of
the optimisation problem, not entered by the user);

• �t are lagrange multipliers on the hard growth tunes (note that these are computed as part
of the optimisation problem, not entered by the user).

Each of the summations in the above Lagrangian goes over those periods in which the respective
bracketed terms are defined (observations or tunes exist). You can combine any number of any
tunes in one run of llf, including out-of-sample tunes (see below).

How to enter the tunes

• The soft and hard tunes on the level of the trend are entered as time series through the option
’level=’.

• The soft and hard tunes on the change in the trend are entered as time series through the
option ’change=’.

• In the tseries objects entered through ’level=’ and/or ’change=’, you can combine any
number of hard and soft tune. In each particular period, you can obviously specify only a
hard tune or only a soft tune. You can think of hard tunes as a special case of soft tunes with
infinitely large weights.

• A hard tune is specified as a plain real number (i.e. a number with a zero complex part).

• A soft tune must be entered as a complex number whose real part specifies the tune itself,
and the imaginary part specifies the inverse of the weight, i.e. 1=vt or 1=ut, on that tune in
that period. Note that if the weight goes to infinity, the imaginary part becomes zero and
the tune becomes a hard tune.

Out-of-sample tunes

Tunes can be imposed also at dates before the first observation of the input series, or after the
last observation. In other words, the time series in ’level=’ and/or ’growth=’ can have a more
extended range (at either side) than the filtered input series.

Default smoothing parameters

If the user does not specify the smoothing parameter using the ’lambda=’ option (or reassigns the
default @auto), a default value is used. The default value is based on common practice and can be

345

Time Series (tseries Objects): moving

calculated using the date frequency of the input time series as \lambda = 10 \cdot f, where f is
the frequency (yearly=1, half-yearly=2, quarterly=4, bi-monthly=6, monthly=12). This gives the
following default values:

• 10 for yearly time series (cut-off periodicity of 19.79 years);
• 20 for half-yearly time series (cut-off periodicity of 14.02 years);
• 40 for quarterly time series (cut-off periodicity of 9.92 years);
• 60 for bi-monthly time series (cut-off periodicity of 8.11 years);
• 120 for monthly time series (cut-off periodicity of 5.73 years).

Note that there is no default value for data with indeterminate or daily frequency: for these types
of time series, you must always use the option “lambda=”.

Example

llf2
Swap output arguments of the local linear trend filter with tunes

See help on tseries/llf P342 .

moving
Apply function to moving window of observations

Syntax

Input arguments marked with a ~ (tilde) sign may be omitted.

X = moving(X,~Range,...)

Input arguments

• X [tseries] - Tseries object on whose observations the function will be applied.

• ~Range [numeric | char | @all] - Date range from which input time series date will be used;
@all means the entire range on which the input time series X is defined.

346

Time Series (tseries Objects): normalise

Output arguments

• X [tseries] - Output time series.

Options

• ’function=’ [function_handle | @mean] - Function to be applied to moving window of
observations.

• ’window=’ [numeric | @auto] - The window of observations where 0 means the current date,
-1 means one period lag, etc. @auto means that the last N observations (including the current
one) are used, where N is the frequency of the input data.

Description

Example

ndims
Number of dimensions in tseries object data

Syntax

N = ndims(X)

Input arguments

• X [tseries] - Input tseries object.

Output arguments

• N [numeric] - Number of dimensions in the input object.

Description

Example

347

Time Series (tseries Objects): pct

normalise
Normalise (or rebase) data to particular date

Syntax

X = normalise(X,NormDate,...)

Input arguments

• x [tseries] - Input time series that will be normalised.

• NormDate [numeric | ’start’ | ’end’ | ’nanStart’ | ’nanEnd’] - Date relative to which
the input data will be normalised; if not specified, ’nanStart’ (the first date for which all
columns have an observation) will be used.

Output arguments

• X [tseries] - Normalised time series.

Options

• ’mode=’ [’add’ | ’mult’] - Additive or multiplicative normalisation.

Description

Example

pct
Percent rate of change

Syntax

X = pct(X)

X = pct(X,K,...)

348

Time Series (tseries Objects): permute

Input arguments

• X [tseries] - Input tseries object.

• K [numeric] - Time shift over which the rate of change will be computed, i.e. between time
t and t+k; if not specified K will be set to -1.

Output arguments

• X [tseries] - Percentage rate of change in the input data.

Options

• ’outputFreq=’ [1 | 2 | 4 | 6 | 12 | empty] - Convert the rate of change to the requested date
frequency; empty means plain rate of change with no conversion.

Description

Example

In this example, x is a monthly time series. The following command computes the annualised rate
of change between month t and t-1:

pct(x,-1,’outputfreq=’,1)

while the following line computes the annualised rate of change between month t and t-3:

pct(x,-3,’outputFreq=’,1)

permute
Permute dimensions of a tseries object

Syntax

X = permute(X,Order)

349

Time Series (tseries Objects): plot

Input arguments

• X [tseries] - Tseries object whose dimensions, except the first (time) dimension, will be
rearranged in the order specified by the vector order.

• Order [numeric] - New order of dimensions; because the time dimension cannot be permuted,
order(1) must be always 1.

Output arguments

• X [tseries] - Output tseries object with its dimensions permuted.

Description

See help on the standard Matlab function permute.

Example

plot
Line graph for tseries objects

Syntax

[H,Range] = plot(X,...)

[H,Range] = plot(Range,X,...)

[H,Range] = plot(Ax,Range,X,...)

Input arguments

• Ax [numeric] - Handle to axes in which the graph will be plotted; if not specified, the current
axes will used.

• Range [numeric | char] - Date range; if not specified the entire range of the input tseries
object will be plotted.

• X [tseries] - Input tseries object whose columns will be ploted as a line graph.

350

Time Series (tseries Objects): plotcmp

Output arguments

• H [numeric] - Handles to lines plotted.

• Range [numeric] - Actually plotted date range.

Options

• ’datePosition=’ [’centre’ | ’end’ | ’start’] - Position of each date point within a given
period span.

• ’dateTick=’ [numeric | Inf] - Vector of dates locating tick marks on the X-axis; Inf means
they will be created automatically.

• ’tight=’ [true | false] - Make the y-axis tight.

See help on built-in plot function for other options available.

Date format options

See dat2str P280 for details on date format options.

• ’dateFormat=’ [char | cellstr | ’YYYYFP’] - Date format string, or array of format strings
(possibly different for each date).

• ’freqLetters=’ [char | ’YHQBMW’] - Six letters used to represent the six possible frequencies
of IRIS dates, in this order: yearly, half-yearly, quarterly, bi-monthly, monthly, and weekly
(such as the ’Q’ in ’2010Q1’).

• ’months=’ [cellstr | {’January’,...,’December’}] - Twelve strings representing the names
of the twelve months.

• ’standinMonth=’ [numeric | ’last’ | 1] - Month that will represent a lower-than-monthly-
frequency date if the month is part of the date format string.

Description

Example

plotcmp
Comparison graph for two time series

351

Time Series (tseries Objects): plotpred

Syntax

[Ax,Lhs,Rhs] = plotcmp(X,...)

[Ax,Lhs,Rhs] = plotcmp(Range,X,...)

Input arguments

• Range [numeric] - Date range; if not specified the entire range of the input tseries object will
be plotted.

• X [tseries] - Tseries object with two or more columns; the difference (between the second and
the first column (or any other linear combination of its columns specified through the option
’compare=’) will be displayed as an RHS area or bar graph.

Output arguments

• Ax [handle | numeric] - Handles to the LHS and RHS axes.

• Lhs [handle | numeric] - Handles to the two original lines.

• Rhs [handle | numeric] - Handles to the area or bar difference graph.

Options

• ’baseLine=’ [true | false] - Draw a baseline in the bar/area difference graph.

• ’compare=’ [numeric | [-1;1]] - Linear combination of the observations that will be plotted
in the RHS graph; [-1;1] means a difference between the second series and the first series,
X{:,2}-X{:,1}.

• ’cmpColor=’ [numeric | [1,0.75,0.75]] - Color that will be used to plot the area or bar
difference (comparison) graph.

• ’cmpPlotFunc=’ [@area | @bar] - Function that will be used to plot the difference (compari-
sion) data on the RHS.

See help on tseries/plotyy P354 for other options available.

Description

Example

352

Time Series (tseries Objects): plotpred

plotpred
Plot Kalman filter predictions

Syntax

[H1,H2,H3] = plotpred(X,Y,...)

[H1,H2,H3] = plotpred(Ax,X,Y,...)

[H1,H2,H3] = plotpred(Ax,Range,X,Y,...)

Input arguments

• X [tseries] - Input data with time series observations.

• Y [tseries] - Input data with predictions calculated in a Kalman filter run with an ’ahead=’

option.

• Ax [numeric] - Handle to axes object in which the data will be plotted.

• Range [numeric | Inf] - Date range on which the input data will be plotted.

Output arguments

• H1 [numeric] - Handles to a line object showing the time series observations (the first column,
X, in the input data).

• H2 [numeric] - Handles to line objects showing the Kalman filter predictions (the second and
further columns, Y, in the input data).

• H3 [numeric] - Handles to one-point line objects displaying a marker at the start of each line.

Options

• ’connect=’ [true | false] - Connect the prediction lines, Y, with the corresponding obser-
vation in X.

• ’firstMarker=’ [’none’ | char] - Type of marker displayed at the start of each prediction
line.

• ’showNaNLines=’ [true | false] - Show or remove lines with whose starting points are NaN
(missing observations).

See help on plot P350 and on the built-in function plot for options available.

353

Time Series (tseries Objects): plotyy

Description

Example

plotyy
Line plot function with LHS and RHS axes for time series

Syntax

[Ax,Lhs,Rhs,Range] = plotyy(X,Y,...)

[Ax,Lhs,Rhs,Range] = plotyy(Range,X,Y,...)

[Ax,Lhs,Rhs,Range] = plotyy(RangeLhs,X,RangeRhs,Y,...)

Input arguments

• Range [numeric | char] - Date range; if not specified the entire range of the input tseries
object will be plotted.

• RangeLhs [numeric | char] - LHS plot date range.

• RangeRhs [numeric | char] - RHS plot date range.

• X [tseries] - Input tseries object whose columns will be plotted and labelled on the LHS.

• Y [tseries] - Input tseries object whose columns will be plotted and labelled on the RHS.

Output arguments

• Ax [handle | numeric] - Handles to the LHS and RHS axes.

• Lhs [handle | numeric] - Handles to series plotted on the LHS axis.

• Rhs [handle | numeric] - Handles to series plotted on the RHS axis.

• Range [handle | numeric] - Actually plotted date range.

354

Time Series (tseries Objects): redate

Options

• ’coincide=’ [true | false] - Make the LHS and RHS y-axis grids coincide.

• ’lhsPlotFunc=’ [@area | @bar | @plot | @stem] - Function that will be used to plot the LHS
data.

• ’lhsTight=’ [true | false] - Make the LHS y-axis tight.

• ’rhsPlotFunc=’ [@area | @bar | @plot | @stem] - Function that will be used to plot the RHS
data.

• ’rhsTight=’ [true | false] - Make the RHS y-axis tight.

See help on tseries/plot P350 and the built-in function plotyy for all options available.

Description

Example

redate
Change time dimension of time series

Syntax

X = redate(X,oldDate,newDate)

Input arguments

• X [tseries] - Input time series.

• OldDate [numeric] - Base date that will be converted to a new date; OldDate does not need
to be the stard date of X and does not even need to be within the current date range of X.

• NewDate [numeric] - A new date to which the base date oldDate will be changed; NewDate
need not be the same frequency as OldDate.

355

Time Series (tseries Objects): regress

Output arguments

• X [tseries] - Output tseries object with identical data as the input tseries object, but with
its time dimension changed.

Description

Example

Create a time series on a date range from 2000Q1 to 2000Q4. Change the time dimension of the time
series so that 1999Q4 (which is a date outside the original time series range) changes into 2009Q4

(which will again be a date outside the new time series range).

>> x = tseries(qq(2000,1):qq(2000,4),1:4)

x =

tseries object: 4-by-1

2000Q1: 1

2000Q2: 2

2000Q3: 3

2000Q4: 4

’’

user data: empty

export files: [0]

>> redate(x,qq(1999,4),qq(2009,4))

ans =

tseries object: 4-by-1

2010Q1: 1

2010Q2: 2

2010Q3: 3

2010Q4: 4

’’

user data: empty

export files: [0]

regress
Ordinary or weighted least-square regression

Syntax

356

Time Series (tseries Objects): repmat

[B,BStd,E,EStd,YFit,Range,BCov] = regress(Y,X)

[B,BStd,E,EStd,YFit,Range,BCov] = regress(Y,X,Range,...)

Input arguments

• Y [tseries] - Tseries object with independent (LHS) variables.

• X [tseries] - Tseries object with regressors (RHS) variables.

• Range [numeric] - Date range on which the regression will be run; if not specified, the entire
range available will be used.

Output arguments

• B [numeric] - Vector of estimated regression coefficients.

• BStd [numeric] - Vector of std errors of the estimates.

• E [tseries] - Tseries object with the regression residuals.

• EStd [numeric] - Estimate of the std deviation of the regression residuals.

• YFit [tseries] - Tseries object with fitted LHS variables.

• Range [numeric] - The actually used date range.

• bBCov [numeric] - Covariance matrix of the coefficient estimates.

Options

• ’constant=’ [true | false] - Include a constant vector in the regression; if true the constant
will be placed last in the matrix of regressors.

• ’weighting=’ [tseries | empty] - Tseries object with weights on the observations in the
individual periods.

Description

This function calls the built-in lscov function.

Example

357

Time Series (tseries Objects): reshape

repmat
Repeat copies of time series data

Syntax

X = repmat(X,Rep1,Rep2,...)

Input arguments

• X [tseries] - Input time series.

• Rep1, Rep2, . . . [numeric] - List of scalars that describe how copies of X data are arranged
in each dimension.

Output arguments

• X [tseries] - Output time series.

Description

See help on built-in bsxfun for more help.

Example

reshape
Reshape size of time series in 2nd and higher dimensions

Syntax

x = reshape(x,newsize)

358

Time Series (tseries Objects): resize

Input arguments

• x [tseries] - Tseries object whose data will be reshaped in 2nd and/or higher dimensions.

• newsize [numeric] - New size of the tseries object data; the first dimension (time) must be
preserved.

Output arguments

• x [tseries] - Reshaped tseries object.

Description

Example

resize
Clip tseries object down to a specified date range

Syntax

X = resize(X,Range)

Input arguments

• X [tseries] - Input tseries object whose date range will be clipped down.

• Range [numeric] - New date range to which the input tseries object will be resized; the range
can be specified as a [startDate,endDate] vector where -Inf and Inf can be used for the
dates.

Output arguments

• X [tseries] - Output tseries object with its date range clipped down to Range.

359

Time Series (tseries Objects): round

Description

Example

rmse
Compute RMSE for given observations and predictions

Syntax

[Rmse,Pe] = rmse(Obs,Pred)

[Rmse,Pe] = rmse(Obs,Pred,Range,...)

Input arguments

• Obs [tseries] - Input data with observations.

• Pred [tseries] - Input data with predictions (a different prediction horizon in each column);
Pred is typically the outcome of the Kalman filter, model/filter P93 or VAR/filter P223 ,
called with the option ’ahead=’.

• Range [numeric | Inf] - Date range on which the RMSEs will be evaluated; Inf means the
entire possible range available.

Output arguments

• Rmse [numeric] - Numeric array with RMSEs for each column of Pred.

• Pe [tseries] - Prediction errors, i.e. the difference Obs - Pred evaluated within Range.

Description

Example

round
Round tseries values to specified number of decimals

360

Time Series (tseries Objects): scatter

Syntax

X = round(X)

X = round(X,Dec)

X = round(X,Dec,’significant’)

Input arguments

• X [tseries] - Tseries object whose data will be rounded.

• Dec [numeric] - Number of decimals to which the tseries data will be rounded; if not specified,
the data are rounded to nearest integer.

• ’significant’ - See documentation on the built-in Matlab function round; works only in
R2014b or later.

Output arguments

• X [tseries] - Rounded tseries object.

Description

The number of decimals, to which the tseries data will be rounded, can be positive, zero, or negative.

Example

scatter
Scatter graph for tseries objects

Syntax

[H,Range] = scatter([X,Y],...)

[H,Range] = scatter(Range,[X,Y],...)

[H,Range] = scatter(Ax,Range,[X,Y],...)

361

Time Series (tseries Objects): single

Input arguments

• Ax [numeric] - Handle to axes in which the graph will be plotted; if not specified, the current
axes will used.

• Range [numeric | char] - Date range; if not specified the entire range of the input tseries
object will be plotted.

• X, Y [tseries] - Two scalar tseries objects plotted on the x-axis and the y-axis, respectively.

Output arguments

• H [numeric] - Handles to the lines plotted.

• Range [numeric] - Actually plotted date range.

Options

See help on tseries/plot P350 and the built-in function scatter for all options available.

Description

Example

single
Return tseries observations as single-precision numeric array

Syntax

y = single(x)

Input arguments

• x [tseries] - Tseries object whose observations will be returned as single-precision numeric
array.

362

Time Series (tseries Objects): size

Output arguments

• y [numeric] - Single-precision numeric array with the input tseries observations in columns.

Description

Example

singledata
Convert tseries observations to single precision

Syntax

x = singledata(x)

Input arguments

• x [tseries] - Tseries object whose observations will be be converted to single precision.

Output arguments

• y [numeric] - Tseries object with single-precision observations.

Description

Example

size
Size of tseries object data

Syntax

S = size(X)

[S1,S2,...,Sn] = size(X)

363

Time Series (tseries Objects): sort

Input arguments

• X [tseries] - Tseries object whose size will be returned.

Output arguments

• S [numeric] - Vector of sizes of the tseries object data in each dimension, S = [S1,S2,...,Sn].

• S1, S2, . . . , Sn [numeric] - Sizes of the tseries object data in each dimension.

Description

Example

sort
Sort tseries columns by specified criterion

Syntax

[Y,INDEX] = sort(X,CRIT)

Input arguments

• X [tseries] - Input tseries object whose columns will be sorted in order determined by the
criterion crit.

• CRIT [‘sumsq’ | ‘sumabs’ | ‘max’ | ‘maxabs’ | ‘min’ | ‘minabs’] - Criterion used to sort the
input tseries object columns.

Output arguments

• Y [tseries] - Output tseries object with columns sorted in order determined by the input
criterion, CRIT.

• INDEX [numeric] - Vector of indices, y = x{:,index}.

364

Time Series (tseries Objects): specrange

Description

Example

specrange
Time series specific range

Syntax

Rng = specrange(X,S)

Input arguments

• X [tseries] - Time series.

• S [numeric | @all] - Range specification; the output range Rng will be constructed from the
first and the last element of S only.

Output arguments

• Rng [numeric] - Date range constructed from S specific to time series X.

Description

The time series specific range is constructed as startDate:endDate where

• the start date startDate is S(1) if S(1) is a serial date number, or the start date of the input
series X if S(1) is Inf, -Inf, or @all;

• the end date endDate is S(end) if S(end) is a serial date number, or the end date of the input
series X if S(end) is Inf, or @all.

Example

Create a time series from 2000Q1 to 2001Q4

>> x = tseries(qq(2000,1):qq(2001,4), @rand);

365

Time Series (tseries Objects): spy

The function specrange returns the full range of the time series when S is Inf

>> dat2str(specrange(x,Inf))

ans =

Columns 1 through 6

’2000Q1’ ’2000Q2’ ’2000Q3’ ’2000Q4’ ’2001Q1’ ’2001Q2’

Columns 7 through 8

’2001Q3’ ’2001Q4’

or when S is [-Inf,Inf]

>> dat2str(specrange(x,[-Inf,Inf]))

ans =

Columns 1 through 6

’2000Q1’ ’2000Q2’ ’2000Q3’ ’2000Q4’ ’2001Q1’ ’2001Q2’

Columns 7 through 8

’2001Q3’ ’2001Q4’

or when S is @all

>> dat2str(specrange(x,@all))

ans =

Columns 1 through 6

’2000Q1’ ’2000Q2’ ’2000Q3’ ’2000Q4’ ’2001Q1’ ’2001Q2’

Columns 7 through 8

’2001Q3’ ’2001Q4’

A range from the start of the time series to a specific date is returned when S(1) is -Inf and S(end)

is that specific end date:

>> dat2str(specrange(x,[-Inf,qq(2000,3)]))

ans =

’2000Q1’ ’2000Q2’ ’2000Q3’

A range from a specific date to the end of the time series is returned when S(1) is that specific
start date date, and S(end) is Inf:

>> dat2str(specrange(x,[qq(2000,3),Inf]))

ans =

’2000Q3’ ’2000Q4’ ’2001Q1’ ’2001Q2’ ’2001Q3’ ’2001Q4’

366

Time Series (tseries Objects): startdate

spy
Visualise tseries observations that pass a test

Syntax

[AA,LL] = spy(X,...)

[AA,LL] = spy(RANGE,X,...)

Input arguments

• X [tseries] - Input tseries object whose non-NaN observations will be plotted as markers.

• RANGE [tseries] - Date range on which the tseries observations will be visualised; if not
specified the entire available range will be used.

Output arguments

• AA [tseries] - Handle to the axes created.

• LL [tseries] - Handle to the marks plotted.

Options

• ’names=’ [cellstr] - Names that will be used to annotate individual columns of the input
tseries object.

• ’test=’ [function_handle | @(x)~isnan(x)] - Test applied to each observations; only the
values returning a true will be displayed.

See help on tseries/plot P350 and the built-in function spy for all options available.

Description

Example

startdate
Date of the first available observation in a tseries object

367

Time Series (tseries Objects): stdise

Syntax

D = startdate(X)

Input arguments

• X [tseries] - Tseries object.

Output arguments

• D [numeric] - IRIS serial date number representing the date of the first observation available
in the input tseries.

Description

The startdate function is equivalent to calling

get(X,’startDate’)

Example

stdise
Standardise tseries data by subtracting mean and dividing by std deviation

Syntax

[X,M,S] = stdise(X)

[X,M,S] = stdise(X,Flag)

Input arguments

• X [tseries] - Input tseries object whose data will be normalised.

• Flag [0 | 1] - flag==0 normalises by N-1, flag==1 normalises by N, where N is the sample
length.

368

Time Series (tseries Objects): stem

Output arguments

• X [tseries] - Output tseries object with standardised data.

• XMeam [numeric] - Estimated mean subtracted from the input tseries observations.

• XStd [numeric] - Estimated std deviation by which the input tseries observations have been
divided.

Description

Example

stem
Plot tseries as discrete sequence data

Syntax

[H,Range] = stem(X,...)

[H,Range] = stem(Range,X,...)

[H,Range] = stem(Ax,Range,X,...)

Input arguments

• Ax [handle | numeric] - Handle to axes in which the graph will be plotted; if not specified,
the current axes will used.

• Range [numeric | char] - Date range; if not specified the entire range of the input tseries
object will be plotted.

• X [tseries] - Input tseries object whose columns will be ploted as a stem graph.

Output arguments

• H [handle | numeric] - Handles to stems plotted.

• Range [numeric] - Actually plotted date range.

369

Time Series (tseries Objects): subsref

Options

See help on tseries/plot P350 and the built-in function stem for all options available.

Description

Example

subsasgn
Subscripted assignment for tseries objects

Syntax

X(Dates) = Values;

X(Dates,I,J,K,...) = Values;

Input arguments

• X [tseries] - Tseries object that will be assigned new observations.

• Dates [numeric] - Dates for which the new observations will be assigned.

• I, J, K, . . . [numeric] - References to 2nd and higher dimensions of the tseries object.

• Values [numeric] - New observations that will assigned at specified dates.

Output arguments

• X [tseries] - Tseries object with newly assigned observations.

Description

Example

370

Time Series (tseries Objects): trend

subsref
Subscripted reference function for tseries objects

Syntax returning numeric array

... = X(Dates)

... = X(Dates,...)

Syntax returning tseries object

... = X{Dates}

... = X{Dates,...}

Input arguments

• X [tseries] - Tseries object.

• Dates [numeric] - Dates for which the time series observations will be returned, either as a
numeric array or as another tseries object.

Description

Example

trend
Estimate a time trend

Syntax

X = trend(X,range)

371

Time Series (tseries Objects): tseries

Input arguments

• X [tseries] - Input time series.

• Range [numeric | @all | char] - Range for which the trend will be computed; @all means the
entire range of the input times series.

Output arguments

• X [tseries] - Output trend time series.

Options

• ’break=’ [numeric | empty] - Vector of breaking points at which the trend may change its
slope.

• ’connect=’ [true | false] - Calculate the trend by connecting the first and the last obser-
vations.

• ’diff=’ [true | false] - Estimate the trend on differenced data.

• ’log=’ [true | false] - Logarithmise the input data, de-logarithmise the output data.

• ’season=’ [true | false | 2 | 4 | 6 | 12] - Include deterministic seasonal factors in the trend.

Description

Example

tseries
Create new time series (tseries) object

Syntax

X = tseries()

X = tseries(Dates,Values)

X = tseries(Dates,Values,Comment)

372

Time Series (tseries Objects): windex

Input arguments

• Dates [numeric | char] - Dates for which observations will be supplied; Dates do not need to
be sorted in ascending order or create a continuous date range. If Dates is scalar and Values

have multiple rows, then the date in Dates is interpreted as a startdate for the entire time
series.

• Values [numeric | function_handle] - Numerical values (observations) arranged columnwise,
or a function that will be used to create an N-by-1 array of values, where N is the number of
Dates.

• Comment [char | cellstr] - Comment or comments attached to each column of observations.

Output arguments

• X [tseries] - New tseries object.

Description

Example

windex
Simple weighted or Divisia index

Syntax

Y = windex(X,W,Range)

Input arguments

• X [tseries] - Input times series.

• W [tseries | numeric] - Fixed or time-varying weights on the input time series.

• Range [numeric] - Range on which the Divisia index is computed.

Output arguments

• Y [tseries] - Weighted index based on X.

373

Time Series (tseries Objects): x12

Options

• ’method=’ [‘divisia’ | ‘simple’] - Weighting method.

• ’log=’ [true | false] - Logarithmise the input data before computing the index, delogarith-
mise the output data.

Description

Example

wmean
Weighted average of time series observations

Syntax

Y = wmean(X,RANGE,BETA)

Input arguments

• X [tseries] - Input tseries object whose data will be averaged column by column.

• RANGE [numeric] - Date range on which the weighted average will be computed.

• BETA [numeric] - Discount factor; the last observation gets a weight of of 1, the N-minus-1st
observation gets a weight of BETA, the N-minus-2nd gets a weight of BETAˆ2, and so on.

Output arguments

• Y [numeric] - Array with weighted average of individual columns; the sizes of Y are identical
to those of the input tseries object in 2nd and higher dimensions.

Description

Example

374

Time Series (tseries Objects): x12

x12
Access to X13-ARIMA-SEATS seasonal adjustment program

Syntax with a single type of output requested

[Y,OutpFile,ErrFile,Model,X] = x12(X,...)

[Y,OutpFile,ErrFile,Model,X] = x12(X,Range,...)

Syntax with mutliple types of output requested

[Y1,Y2,...,OutpFile,ErrFile,Model,X] = x12(X,Range,...)

See the option ’output=’ for the types of output data available from X12.

Input arguments

• X [tseries] - Input data that will seasonally adjusted or filtered by the Census X12 Arima; X
must be a quarterly or monthly time series.

• Range [numeric | char | @all] - Date range on which the X12 will be run; @all means the
entire on which the input time series is defined; Range may be omitted.

Output arguments

• Y, Y1, Y2, . . . [tseries] - Requested output data, by default only one type of output is
returned, the seasonlly adjusted data; see the option ’output=’.

• OutpFile [cellstr] - Contents of the output log files produced by X12; each cell contains the
log file for one type of output requested.

• ErrFile [cellstr] - Contents of the error files produced by X12; each cell contains the error
file for one type of output requested.

• Model [struct] - Struct array with model specifications and parameter estimates for each of
the ARIMA models fitted; Model matches the size of X is 2nd and higher dimensions.

• X [tseries] - Original input data with forecasts and/or backcasts appended if the options
’forecast=’ and/or ’backcast=’ are used.

375

Time Series (tseries Objects): x12

Options

• ’backcast=’ [numeric | 0] - Run a backcast based on the fitted ARIMA model for this
number of periods back to improve on the seasonal adjustment; see help on the x11 specs in
the X13-ARIMA-SEATS manual. The backcast is included in the output argument X.

• ’cleanup=’ [true | false] - Delete temporary X12 files when done; the temporary files are
named iris_x12a.*.

• ’log=’ [true | false] - Logarithmise the input data before, and de-logarithmise the output
data back after, running x12.

• ’forecast=’ [numeric | 0] - Run a forecast based on the fitted ARIMA model for this
number of periods ahead to improve on the seasonal adjustment; see help on the x11 specs in
the X13-ARIMA-SEATS manual. The forecast is included in the output argument X.

• ’display=’ [true | false] - Display X12 output messages in command window; if false the
messages will be saved in a TXT file.

• ’dummy=’ [tseries | empty] - User dummy variable or variables (in case of a multivariate tseries
object) used in X13-ARIMA-SEATS regression; the dummy variables must also include values
for forecasts and backcasts if you request them; the type of the dummy can be specified in
the option ’dummyType=’.

• ’dummyType=’ [’ao’ | ’holiday’ | ’td’] - Type of the user dummy (which is specified through
the option ’dummy=’); the three basic types of dummies are additive outlier (’ao’), holiday
flows (’holiday’), and trading days (’td’); see the X13-ARIMA-SEATS or X13-ARIMA
documentation for more details (available from the U.S.Census Bureau website), look for the
section on the REGRESSION spec, options ‘user’ and ‘usertype’.

• ’mode=’ [’auto’ | ’add’ | ’logadd’ | ’mult’ | ’pseudoadd’ | ’sign’] - Seasonal adjustment
mode (see help on the x11 specs in the X13-ARIMA-SEATS manual); ’auto’means that series
with only positive or only negative numbers will be adjusted in the ’mult’ (multiplicative)
mode, while series with combined positive and negative numbers in the ’add’ (additive)
mode.

• ’maxIter=’ [numeric | 1500] - Maximum number of iterations for the X12 estimation pro-
cedure. See help on the estimation specs in the X13-ARIMA-SEATS manual.

• ’maxOrder=’ [numeric | [2,1]] - A 1-by-2 vector with maximum order for the regular ARMA
model (can be 1, 2, 3, or 4) and maximum order for the seasonal ARMA model (can be 1 or
2). See help on the automdl specs in the X13-ARIMA-SEATS manual.

• ‘missing=’ [true | false] - Allow for in-sample missing observations, and fill in values
predicted by an estimated ARIMA process; if false, the seasonal adjustment will not run
and a warning will be thrown.

376

Time Series (tseries Objects): x12

• ’output=’ [char | cellstr | ’SA’] - List of requested output data; the cellstr or comma-
separated list can combine any number of the request specifications listed below in subsection
Output request; See also help on the x11 specs in the X13-ARIMA-SEATS manual.

• ’saveAs=’ [char | empty] - Name (or a whole path) under which X13-ARIMA-SEATS output
files will be saved.

• ’specFile=’ [char | ’default’] - Name of the X13-ARIMA-SEATS spec file; if ’default’
the IRIS default spec file will be used, see description.

• ’tdays=’ [true | false] - Correct for the number of trading days. See help on the
x11regression specs in the X13-ARIMA-SEATS manual.

• ’tempDir=’ [char | function_handle | ’.’] - Directory in which X13-ARIMA-SEATS
temporary files will be created; if the directory does not exist, it will be created at the
beginning and deleted at the end of the execution (unless ’cleanup=’ false).

• ’tolerance=’ [numeric | 1e-5] - Convergence tolerance for the X13 estimation procedure.
See help on the estimation specs in the X13-ARIMA-SEATS manual.

Description

Output requests

The option “output=’ can combine any number of the following requests:

• ’SA’ - seasonally adjusted series;

• ’SF’ - seasonal factors;

• ’TC’ - trend-cycle component;

• ’IR’ - irregular component;

• ’MV’ - the original input series with missing values fitted by running an estimated ARIMA
model.

Missing observations

If you keep ’missing=’ false (this is the default for backward compatibility), x12 will not run on
series with in-sample missing observations, and a warning will be thrown.

If you set ’missing=’ true, you allow for in-sample missing observations. The X13-ARIMA-SEATS
program handles missing observations by filling in values predicted by the estimated ARIMA pro-
cess. You can request the series with missing values filled in by including MV in the option ’output=’.

377

Time Series (tseries Objects): x12

Spec file

The default X13-ARIMA-SEATS spec file is +thirdparty/x12/default.spc. You can create your
own spec file to include options that are not available through the IRIS interface. You can use the
following pre-defined placeholders letting IRIS fill in some of the information needed (check out the
default file):

• $series_data$ is replaced with a column vector of input observations;
• $series_freq$ is replaced with a number representing the date frequency: either 4 for quar-
terly, or 12 for monthly (other frequencies are currenlty not supported by X13-ARIMA-
SEATS);

• $series_startyear$ is replaced with the start year of the input series;
• $series_startper$ is replaced with the start quarter or month of the input series;
• $transform_function$ is replaced with log or none depending on the mode selected by the
user;

• $forecast_maxlead$ is replaced with the requested number of ARIMA forecast periods used
to extend the series before seasonal adjustment.

• $forecast_maxlead$ is replaced with the requested number of ARIMA forecast periods used
to extend the series before seasonal adjustment.

• $tolerance$ is replaced with the requested convergence tolerance in the estimation spec.
• $maxiter$ is replaced with the requested maximum number of iterations in the estimation

spec.
• $maxorder$ is replaced with two numbers separated by a blank space: maximum order of
regular ARIMA, and maximum order of seasonal ARIMA.

• $x11_mode$ is replaced with the requested mode: ’add’ for additive, ’mult’ for multiplicative,
’pseudoadd’ for pseudo-additive, or ’logadd’ for log-additive;

• $x12_save$ is replaced with the list of the requested output series: ’d10’ for seasonals, ’d11’
for final seasonally adjusted series, ’d12’ for trend-cycle, ’d13’ for irregular component.

Two of the placeholders, ’$series_data$ and $x12_output$, are required; if they are not found in
the spec file, IRIS throws an error.

Estimates of ARIMA model parameters

The ARIMA model specification, Model, is a struct with three fields:

• .spec - a cell array with the first cell giving the structure of the non-seasonal ARIMA, and
the second cell giving the structure of the seasonal ARIMA; both specifications follow the
usual Box-Jenkins notation, e.g. [0 1 1].

• .ar - a numeric array with the point estimates of the AR coefficients (non-seasonal and
seasonal).

378

Time Series (tseries Objects): yearly

• .ma - a numeric array with the point estimates of the MA coefficients (non-seasonal and
seasonal).

Example

Run X12 on the entire range of a time series:

xsa = x12(x);

xsa = x12(x,Inf);

xsa = x12(x,@all);

xsa = x12(x,get(x,’range’));

yearly
Display tseries object one calendar year per row

Syntax

yearly(X)

Input arguments

• X [tseries] - Tseries object that will be displayed one full year of observations per row.

Description

The functon yearly currently works for tseries with monthly, bi-monthly, quarterly, and half-yearly
frequency only.

Example

Create a quarterly tseries, and use yearly to display it one calendar year per row.

>> x = tseries(qq(2000,3):qq(2002,2),@rand)

x =

tseries object: 8-by-1

379

Time Series (tseries Objects): yearly

2000Q3: 0.95537

2000Q4: 0.68029

2001Q1: 0.86056

2001Q2: 0.93909

2001Q3: 0.68019

2001Q4: 0.91742

2002Q1: 0.25669

2002Q2: 0.88562

’’

user data: empty

>> yearly(x)

tseries object: 8-by-1

2000Q1-2000Q4: NaN NaN 0.9553698 0.6802907

2001Q1-2001Q4: 0.8605621 0.9390935 0.680194 0.9174237

2002Q1-2002Q4: 0.2566917 0.8856181 NaN NaN

’’

user data: empty

380

Time-Recursive Expressions (trec Objects)

19 Time-Recursive Expressions (trec Objects)

Time-recursive subscript objects (trec objects) allow creating and evaluating time-recursive expres-
sions based on tseries P306 objects. Read below carefully when IRIS fails to evaluate time-recursive
expessions correctly.

Trec methods:

Constructor

• trec P385 - Create new recursive time subscript object.

Creating lags and leads

• plus P384 - Create time-recursive lead of tseries object.
• minus P384 - Create time-recursive lag of tseries object.

Using Time-Recursive Subscripts

Time-recursive expressions are expressions that are evaluated period by period, with each result
assigned immediately to the left-hand side tseries variable, and used in subsequent periods evaluated
afterwards.

To construct and evaluate time-recursive expressions, use tseries referenced by a trec object, or a
lag or lead created from a trec object. Every tseries object on both the left-hand side (i.e. the
variable under construction) and the right-hand side (i.e. the variables in the expression that is
being evaluated) must be referenced by a trec object (or possibly a lag or lead). When referencing
a tseries object by a trec, you can use either curly braces, {...}, or round brackets, (...); there is
no difference between them in time-recursive expressions.

FFF See the description below of situations when IRIS fails to evaluate time-recursive expressions
correctly, and how to avoid/fix such situations.

Example

Construct an autoregressive sequence starting from an initial value of 10 with a autoregressive
coefficient 0.8 between periods 2010Q1 and 2020Q4:

T = trec(qq(2010,1):qq(2020,4));

x = tseries(qq(2009,4),10);

x{T} = 0.8*x{T-1};

381

Time-Recursive Expressions (trec Objects)

Example

Construct a first-order autoregressive process, x, with normally distributed innovations, e:

T = trec(qq(2010,1):qq(2020,4));

x = tseries(qq(2009,4),10);

e = tseries(qq(2010,1):qq(2020,4),@randn);

x{T} = (1-0.8)*10 + 0.8*x{T-1} + e{T};

Example

Construct a second-order log-autoregressive process going backward from year 2020 to year 2000.

T = trec(yy(2020):-1:yy(2000));

b = tseries();

b(yy(2022)) = 1.56;

b(yy(2021)) = 1.32;

b{T} = b{T+1}^1.2 / b{T+2}^0.6;

Example

Construct the first 20 numbers of the Fibonacci sequence:

T = trec(3:20);

f = tseries(1:2,1);

f{T} = f{T-1} + f{T-2};

When IRIS Fails to Evaluate Time-Recursive Expressions Correctly

FFF IRIS fails to evaluate time-recursive expressions correctly (without any indication of an
error) when the following two circumstances occur at the same time:

• At least one tseries object on the right-hand side has been created by copying the left-hand
side tseries object with no further manipulation.

• The time series used in the expression are within a database (struct), or a cell array;

Under these circumstances, the right-hand side tseries variable will be assigned (updated with) the
results calculated in iteration as if it were the tseries variable on the left-hand side.

382

Time-Recursive Expressions (trec Objects)

Example

Create a database with two tseries. Create one of the tseries by simply copying the other (i.e. plain
assignment with no further manipulation).

d = struct();

d.x = tseries(1:10,1);

d.y = d.x;

T = trec(2:10);

d.x{T} = 0.8*d.y{T-1}; % Fails to evaluate correctly.

The above time-recursive expression will be incorrectly evaluated as if it were d.x{T} = 0.8*d.x{T-1}.
However, when the tseries objects are not stored within a database (struct) but exist as stand-alone
variables, the expression will evaluate correctly:

x = tseries(1:10,1);

y = x;

T = trec(2:10);

x{T} = 0.8*y{T-1}; % Evaluates correctly.

Workaround when Time-Recursive Expressions Fail

FFF To evaluate the expression correctly, simply apply any kind of operator or function to
the tseries d.y before it enters the time-recursive expression. Below are examples of some simple
manipulations that do the job without changing the tseries d.y:

d = struct();

d.x = tseries(1:10,1);

d.y = 1*d.x;

or

d = struct();

d.x = tseries(1:10,1);

d.y = d.x{:};

or

383

Time-Recursive Expressions (trec Objects): plus

d = struct();

d.x = tseries(1:10,1);

d.y = d.x;

d.y = d.y + 0;

minus
Create time-recursive lag of tseries object

Syntax

X{T-K}

Input arguments

• X [tseries] - Tseries object whose time-recursive lag will be created.

• T [trec] - Initialized trec object.

• K [numeric] - Integer scalar specifying the lag.

Description

The tseries object, X, referenced by T-K in a time-recursive expression will, in each iteration, return
a value that corresponds to period t-K, where t is the currently processed date from the vector of
dates (or date range) associated with the trec object, T.

plus
Create time-recursive lead of tseries object

Syntax

X{T+K}

384

Time-Recursive Expressions (trec Objects): trec

Input arguments

• X [tseries] - Tseries object whose time-recursive lead will be created.

• T [trec] - Initialized trec object.

• K [numeric] - Integer scalar specifying the lead.

Description

The tseries object, X, referenced by T+K in a time-recursive expression will, in each iteration, return
a value that corresponds to period t+K, where t is the currently processed date from the vector of
dates (or date range) associated with the trec object, T.

trec
Create new recursive time subscript object

Syntax

T = trec(Dates)

Input arguments

• Dates [numeric] - Vector of dates or date range on which the final time-recursive expression
will be evaluated.

Output arguments

• T [trec] - New time-recursive subscript object.

Description

Time-recursive subscript objects are used to reference tseries objects on both the left-hand side
and the right-hand side of a time-recursive assignment. The assignment is then evaluated for each
date in Dates, from the first to the last.

See more on time-recursive expressions in Contents P381 , including the description of instances in
which IRIS fails to evaluate the time-recursive expressions correctly.

385

Time-Recursive Expressions (trec Objects): trec

Example

Construct a first-order autoregressive process with normally distributed residuals:

T = trec(qq(2010,1):qq(2020,4));

x = tseries(qq(2009,4),10);

e = tseries(qq(2010,1):qq(2020,4),@randn);

x(T) = 10 + 0.8*x(T-1) + e(T);

386

Basic Database Management

20 Basic Database Management

Loading and saving databases

• dbload P397 - Create database by loading CSV file.
• dbsave P410 - Save database as CSV file.
• xls2csv P418 - Convert XLS file to CSV file.

Getting information about databases

• dbnames P402 - List of database entries filtered by name and/or class.
• dbprintuserdata P408 - Print names of database tseries along with specified fields of their
userdata.

• dbrange P409 - Find a range that encompasses the ranges of the listed tseries objects.
• dbsearchuserdata P413 - Search database to find tseries by matching the content of their
userdata fields.

• dbuserdatalov P416 - List of values found in a specified user data field in tseries objects.

Converting databases

• array2db P388 - Convert numeric array to database.
• db2array P389 - Convert tseries database entries to numeric array.
• db2tseries P390 - Combine tseries database entries in one multivariate tseries object.

Batch processing

• dbbatch P390 - Run a batch job to create new database fields.
• dbclip P393 - Clip all tseries entries in database down to specified date range.
• dbcol P394 - Retrieve the specified column or columns from database entries.
• dbcomment P395 - Create model-based comments for database tseries entries.
• dbfun P395 - Apply function to database fields.
• dbplot P405 - Plot from database.
• dbpage P404 - Retrieve the specified page or pages from database entries.
• dbredate P410 - Redate all tseries objects in a database.

Combining and splitting databases

• dboverlay P403 - Combine tseries observations from two or more databases.
• dbmerge P400 - Merge two or more databases.
• dbminuscontrol P401 - Create simulation-minus-control database.

387

Basic Database Management: db2array

• dbsplit P414 - Split database into mutliple databases.

Overloaded operators for databases

• - P417 - Remove entries from a database.
• * P417 - Keep only the database entries that are on the list.
• + P418 - Merge entries from two databases together.

Getting on-line help on database functions

help dbase

help dbase/function_name

array2db
Convert numeric array to database

Syntax

D = array2db(X,Range,List)

Input arguments

• X [numeric] - Numeric array with individual time series in columns.

• Dates [numeric] - Vector of dates for individual rows of X.

• List [cellstr | char] - List of names for time series in individual columns of X.

Output arguments

• D [struct] - Output database.

Description

Example

388

Basic Database Management: db2array

db2array
Convert tseries database entries to numeric array

Syntax

[X,Incl,Range] = db2array(D)

[X,Incl,Range] = db2array(D,List)

[X,Incl,Range] = db2array(D,List,Range,...)

Input arguments

• D [struct] - Input database with tseries objects that will be converted to a numeric array.

• List [char | cellstr] - List of tseries names that will be converted to a numeric array; if not
specified, all tseries entries found in the input database, D, will be included in the output
arrays, X.

• Range [numeric | Inf] - Date range; Inf means a range from the very first non-NaN obser-
vation to the very last non-NaN observation.

Output arguments

• X [numeric] - Numeric array with observations from individual tseries objects in columns.

• Incl [cellstr] - List of tseries names that have been actually found in the database.

• Range [numeric] - Date range actually used; this output argument is useful when the input
argument Range is missing or Inf.

Description

The output array, X, is always NPer-by-NList-by-NAlt, where NPer is the length of the Range (the
number of periods), NList is the number of tseries included in the List, and NAlt is the maximum
number of columns that any of the tseries included in the List have.

If all tseries data have the same size in 2nd and higher dimensions, the output array will respect
that size in 3rd and higher dimensions. For instance, if all tseries data are NPer-by-2-by-5, the
output array will be NPer-by-Nx-by-2-by-5. If some tseries data have unmatching size in 2nd or
higher dimensions, the output array will be always a 3D array with all higher dimensions unfolded
in 3rd dimension.

If some tseries data have smaller size in 2nd or higher dimensions than other tseries entries, the
last available column will be repeated for the missing columns.

389

Basic Database Management: dbbatch

Example

db2tseries
Combine tseries database entries in one multivariate tseries object

Syntax

[X,Incl,Range] = db2tseries(D,List,Range)

Input arguments

• D [struct] - Input database with tseries objects that will be combined in one multivariate
tseries object.

• List [char | cellstr] - List of tseries names that will be combined.

• Range [numeric | Inf] - Date range.

Output arguments

• X [numeric] - Combined multivariate tseries object.

• Incl [cellstr] - List of tseries names that have been actually found in the database.

• Range [numeric] - The date range actually used.

dbbatch
Run a batch job to create new database fields

Syntax

[D,Processed,Added] = dbbatch(D,NewName,Expr,...)

390

Basic Database Management: dbbatch

Input arguments

• D [struct] - Input database.

• NewName [char] - Pattern that will be used to create names for new database fields based
on the existing ones; use ’$0’ to refer to the name of the currently processed database
field; use ’$1’, ’$2’, etc. to refer to tokens captured in regular expression specified in the
’namefilter=’ option.

• Expr [char] - Expression that will be evaluated on a selection of existing database entries to
create new database entries; the expression can include ’$0’, ’$1’, etc.

Output arguments

• D [struct] - Output database.

• Processed [cellstr] - List of database fields that have been used to create new fields.

• Added [cellstr] - List of new database fields created by evaluating Expr on the corresponding
field in Processed.

Options

• ’classFilter=’ [char | Inf] - From the existing database entries, select only those that are
objects of the specified class or classes, and evaluate the expression Expr on these.

• ’fresh=’ [true | false] - If true, the output database will only contain the newly created
entries; if false the output database will also include all the entries from the input database.

• ’nameFilter=’ [char | empty] - From the existing database entries, select only those that
match this regular expression, and evaluate the expression Expr on these.

• ’nameList=’ [cellstr | Inf] - Evaluate the COMMAND on this list of existing database entries.

• ’stringList=’ [cellstr | empty] - Evaluate the expression Expr on this list of strings; the
strings do not need to be names existing in the database; this options can be comined with
’nameFilter=’, ’nameList=’, and/or ’classFilter=’ to narrow the selection.

Description

This function is primarily meant to create new database fields, each based on an existing one. If
you, on the otherhand, only wish to modify a number of existing fields without adding any new
ones, use dbfun P395 instead.

391

Basic Database Management: dbbatch

The expression Expr is evaluated in the caller workspace, and hence may refer to any variables
existing in the workspace, not only to the database and its fields.

To convert the strings $0, $1, $2, etc. to lower case or upper case, use the dot or colon syntax: $.0,
$.1, $.2 for ower case, and $:0, $:1, $:2 for upper case.

Failure

The function dbbatch will always fail when called on a sub-database from within a function (as
opposed to a script). A sub-database is a struct within a struct, a struct within a cell array, a
struct within an array of structs, etc.

function ...

d.e = dbbatch(d.e,...);

...

end

function ...

d{1} = dbbatch(d{1},...);

...

end

function ...

d(1) = dbbatch(d(1),...);

...

end

Example

For each field (all assumed to be tseries) create a first difference, and name the new series DX where
X is the name of the original series.

d = dbbatch(d,’D$0’,’diff(d.$0)’);

Note that the original series will be presered in the database, together with the newly created ones.

Example

Suppose that in database D you want to seasonally adjust all time series whose names end with _u,
and give these seasonally adjusted series names without the _u.

392

Basic Database Management: dbclip

d = dbbatch(d,’$1’,’x12(d.$0)’,’nameFilter’,’(.*)u’);

or, if you want to make sure only tseries objects will be selected (in case there are database entries
ending with a u other than tseries objects)

d = dbbatch(d,’$1’,’x12(d.$0)’, ...

’nameFilter=’,’(.*)u’,’classFilter=’,’tseries’);

dbclip
Clip all tseries entries in database down to specified date range

Syntax

D = dbclip(D,Range)

Input arguments

• D [struct] - Database or nested databases with tseries objects.

• Range [numeric | cell] - Range or a cell array of ranges to which all tseries objects will be
clipped; multiple ranges can be specified, each for a different date frequency/periodicity.

Output arguments

• D [struct] - Database with tseries objects cut down to range.

Description

This functions looks up all tseries objects within the database d, including tseries objects nested in
sub-databases, and cuts off any values preceding the start date of Range or following the end date
of range. The tseries object comments, if any, are preserved in the new database.

If a tseries entry does not match the date frequency of the input range, a warning is thrown.

Multiple ranges can be specified in Range (as a cell array), each for a different date frequency/periodicity
(i.e. one or more of the following: monthly, bi-monthly, quarterly, half-yearly, yearly, indetermi-
nate). Each tseries entry will be clipped to the range that matches its date frequency.

393

Basic Database Management: dbcol

Example

d = struct();

d.x = tseries(qq(2005,1):qq(2010,4),@rand);

d.y = tseries(qq(2005,1):qq(2010,4),@rand)

d =

x: [24x1 tseries]

y: [24x1 tseries]

dbclip(d,qq(2007,1):qq(2007,4))

ans =

x: [4x1 tseries]

y: [4x1 tseries]

dbcol
Retrieve the specified column or columns from database entries

Syntax

D = dbpage(D,K)

Input arguments

• D [struct] - Input database with (possibly) multivariate tseries objects and numeric arrays.

• K [numeric | logical | ’end’] - Column or columns that will be retrieved from each tseries
object or numeric array in in the input database, D, and returned in the output database.

Output arguments

• D [struct] - Output database with tseries objects and numeric arrays reduced to the specified
column.

394

Basic Database Management: dbfun

Description

Example

dbcomment
Create model-based comments for database tseries entries

Syntax

D = dbcomment(D,M)

Input arguments

• D [struct] - Database.

• M [model] - Model object.

Output arguments

• D [struct] - Database where every tseries entry is (if possible) assigned a comment based on
the description of a model variable or parameter found in the model object, M.

Description

Example

dbfun
Apply function to database fields

Syntax

Input arguments marked with a ~ (tilde) sign may be omitted.

395

Basic Database Management: dbfun

[D,Flag,ErrList,WarnList] = dbfun(Fn,D,...)

[D,Flag,ErrList,WarnList] = dbfun(Fn,D,~D2,~D3,...,~Dk,...)

Input arguments

• Fn [function_handle | char] - Function that will be applied to each field.

• D [struct | cell] - Input database.

• ~D2, ~D3, . . . [struct] - Secondary input databases passed into Func when Func accepts more
than one input argument.

Output arguments

• D [struct] - Output database whose fields will be created by applying Func to each field of
the input database or databases.

• Flag [true | false] - True if no error occurs when evaluating the function.

• ErrList [cellstr] - List of fields on which the function has thrown an error.

• WarnList [cellstr] - List of fields on which the function has thrown a warning.

Options

• ’recursive=’ [true | false] - Go through all sub-databases (i.e. struct fields within the
input struct), applying the function Func to their fields, too.

• ’classFilter=’ [cell | cellstr | rexp | @all] - Apply Func only to database fields whose class
is on the list or matches the regular expression; @all means all fields in the input database D

will be processed.

• ’fresh=’ [true | false] - Remove unprocessed entries from the output database.

• ’nameList=’ [cell | cellstr | rexp | @all] - Apply Func only to this list of database field names
or names that match this regular expression; @all means all entries in the input database D

wil be processed.

• ’onError=’ [’NaN’ | ’remove’] - What to do with the database entry if an error occurs when
being evaluated.

• ’onWarning=’ [’keep’ | ’NaN’ | ’remove’] - What to do with the database entry if an error
occurs when being evaluated.

396

Basic Database Management: dbload

Description

Example

dbload
Create database by loading CSV file

Syntax

D = dbload(FName, ...)

D = dbload(D,FName, ...)

Input arguments

• FName [char | cellstr] - Name of the Input CSV data file or a cell array of CSV file names
that will be combined.

• D [struct] - An existing database (struct) to which the new entries from the input CSV data
file entries will be added.

Output arguments

• D [struct] - Database created from the input CSV file(s).

Options

• ’case=’ [’lower’ | ’upper’ | empty] - Change case of variable names.

• ’commentRow=’ [char | cellstr | {’comment’,’comments’}] - Label at the start of row that
will be used to create tseries object comments.

• ’dateFormat=’ [char | ’YYYYFP’] - Format of dates in first column.

• ’delimiter=’ [char | ’,’] - Delimiter separating the individual values (cells) in the CSV
file; if different from a comma, all occurences of the delimiter will replaced with commas –
note that this will also affect text in comments.

• ’firstDateOnly=’ [true | false] - Read and parse only the first date string, and fill in the
remaining dates assuming a range of consecutive dates.

397

Basic Database Management: dbload

• ’freq=’ [0 | 1 | 2 | 4 | 6 | 12 | 365 | ’daily’ | empty] - Advise frequency of dates; if empty,
frequency will be automatically recognised.

• ’freqLetters=’ [char | ’YHQBM’] - Letters representing frequency of dates in date column.

• ’inputFormat=’ [’auto’ | ’csv’ | ’xls’] - Format of input data file; ’auto’ means the
format will be determined by the file extension.

• ’nameRow=’ [char | numeric | {”,’Variables’}] - String, or cell array of possible strings,
that is found at the beginning (in the first cell) of the row with variable names, or the line
number at which the row with variable names appears (first row is numbered 1).

• ’nameFunc=’ [cell | function_handle | empty] - Function used to change or transform the
variable names. If a cell array of function handles, each function will be applied in the given
order.

• ’nan=’ [char | NaN] - String representing missing observations (case insensitive).

• ’preProcess=’ [function_handle | cell | empty] - Apply this function, or cell array of
functions, to the raw text file before parsing the data.

• ’select=’ [char | cellstr | empty] - Only database entries included on this list will be read
in and returned in the output database D; entries not on this list will be discarded.

• ’skipRows=’ [char | cellstr | numeric | empty] - Skip rows whose first cell matches the string
or strings (regular expressions); or, skip a vector of row numbers.

• ’userData=’ [char | Inf] - Field name under which the database userdata loaded from the
CSV file (if they exist) will be stored in the output database; Inf means the field name will
be read from the CSV file (and will be thus identical to the originally saved database).

• ’userDataField=’ [char | ’.’] - A leading character denoting userdata fields for individual
time series; if empty, no userdata fields will be read in and created.

• ’userDataFieldList=’ [cellstr | numeric | empty] - List of row headers, or vector of row
numbers, that will be included as user data in each time series.

Description

Use the ’freq=’ option whenever there is ambiguity in intepreting the date strings, and IRIS is
not able to determine the frequency correctly (see Example).

Structure of CSV database files

The minimalist structure of a CSV database file has a leading row with variables names, a leading
column with dates in the basic IRIS format, and individual columns with numeric data:

398

Basic Database Management: dbload

+---------+---------+---------+--

| | Y | P |

+---------+---------+---------+--

| 2010Q1 | 1 | 10 |

+---------+---------+---------+--

| 2010Q2 | 2 | 20 |

+---------+---------+---------+--

| | | |

You can add a comment row (must be placed before the data part, and start with a label ‘Comment’
in the first cell) that will also be read in and assigned as comments to the individual tseries objects
created in the output database.

+---------+---------+---------+--

| | Y | P |

+---------+---------+---------+--

| Comment | Output | Prices |

+---------+---------+---------+--

| 2010Q1 | 1 | 10 |

+---------+---------+---------+--

| 2010Q2 | 2 | 20 |

+---------+---------+---------+--

| | | |

You can use a different label in the first cell to denote a comment row; in that case you need to set
the option ’commentRow=’ accordingly.

All CSV rows whose names start with a character specified in the option ’userdataField=’ (a dot
by default) will be added to output tseries objects as fields of their userdata.

+---------+---------+---------+--

| | Y | P |

+---------+---------+---------+--

| Comment | Output | Prices |

+---------+---------+---------+--

| .Source | Stat | IMFIFS |

+---------+---------+---------+--

| .Update | 17Feb11 | 01Feb11 |

+---------+---------+---------+--

| .Units | Bil USD | 2010=1 |

+---------+---------+---------+--

| 2010Q1 | 1 | 10 |

399

Basic Database Management: dbmerge

+---------+---------+---------+--

| 2010Q2 | 2 | 20 |

+---------+---------+---------+--

| | | |

Example

Typical example of using the ’freq=’ option is a quarterly database with dates represented by the
corresponding months, such as a sequence 2000-01-01, 2000-04-01, 2000-07-01, 2000-10-01, etc. In
this case, you can use the following options:

d = dbload(’filename.csv’,’dateFormat’,’YYYY-MM-01’,’freq’,4);

dbmerge
Merge two or more databases

Syntax

D = dbmerge(D1,D2,...)

Input arguments

• D1, D2, . . . [struct] - Input databases whose entries will be combined in the output datase.

Output arguments

• D [struct] - Output database that combines entries from all input database; if some entries
are found in more than one input databases, the last occurence is used.

Description

Example

d1 = struct(’a’,1,’b’,2);

d2 = struct(’a’,10,’c’,20);

400

Basic Database Management: dbminuscontrol

d = dbmerge(d1,d2)

d =

a: 10

b: 2

c: 20

dbminuscontrol
Create simulation-minus-control database

Syntax

[D,C] = dbminuscontrol(M,D)

[D,C] = dbminuscontrol(M,D,C)

Input arguments

• M [model] - Model object on which the databases D and C are based.

• D [struct] - Simulation database.

• C [struct] - Control database; if the input argument C is not specified, the steady-state
database of the model M is used for the control database.

Output arguments

• D [struct] - Simulation-minus-control database, in which all log variables are d.x/c.x, and
all other variables are d.x-c.x.

• C [struct] - Control database.

Description

Example

We run a shock simulation in full levels using a steady-state (or balanced-growth-path) database
as input, and then compute the deviations from the steady state.

401

Basic Database Management: dbnames

d = sstatedb(m,1:40);

... % Set up a shock or shocks here.

s = simulate(m,d,1:40);

s = dboverlay(d,s);

s = dbminuscontrol(m,s,d);

The above block of code is equivalent to this one:

d = zerodb(m,1:40);

... % Set up a shock or shocks here.

s = simulate(m,d,1:40,’deviation=’,true);

s = dboverlay(d,s);

dbnames
List of database entries filtered by name and/or class

Syntax

List = dbnames(D,...)

Input arguments

• D [struct] - Input database.

Output arguments

• List [cellstr] - List of input database entries that pass the name or class test.

Options

• ’nameFilter=’ [cellstr | char | rexp | @all] - List of names or regular expression against
which the database entry names will be matched; @all means all names will be matched.

• ’classFilter=’ [cellstr | char | rexp | @all] - List of names or regular expression against
which the database entry class names will be matched; @all means all classes will be matched.

402

Basic Database Management: dboverlay

Description

Example

Notice the differences in the following calls to dbnames:

dbnames(d,’nameFilter=’,’L_’)

matches all names that contain ’L_’ (at the beginning, in the middle, or at the end of the string),
such as ’L_A’, ’DL_A’, ’XL_’, or just ’L_’.

dbnames(d,’nameFilter=’,’^L_’)

matches all names that start with ’L_’, suc as ’L_A’ or ’L_’, but not ’DL_A’. Finally,

dbnames(d,’nameFilter=’,’^L_.’)

matches all names that start with ’L_’ and have at least one more character after that, such as
’L_A’ but not ’L_’ or ’L_RX’.

dboverlay
Combine tseries observations from two or more databases

Syntax

D = dboverlay(D,D1,D2,...)

Input arguments

• D [struct] - Primary input database.

• D1, D2, . . . [struct] - Databases whose tseries observations will be used to extend or overwrite
observations in the tseries objects of the same name in the primary database.

Output arguments

• D [struct] - Output database.

403

Basic Database Management: dbpage

Description

If more than two databases are combined then they are processed one-by-one: the first is combined
with the second, then the result is combined with the third, and so on, using the following rules:

• If two non-empty tseries objects with the same frequency are combined, the observations are
spliced together. If some of the observations overlap the observations from the second tseries
are used.

• If two empty tseries objects are combined the first is used.
• If a non-empty tseries is combined with an empty tseries, the non-empty one is used.
• If two objects are combined of which at least one is a non-tseries object, the second input
object is used.

Example

dbpage
Retrieve the specified page or pages from database entries

Syntax

D = dbpage(D,K)

Input arguments

• D [struct] - Input database with (possibly) multivariate tseries objects and numeric arrays.

• K [numeric | logical | ’end’] - Page or pages that will be retrieved from each tseries object
or numeric array in in the input database, D, and returned in the output database.

Output arguments

• D [struct] - Output database with tseries objects and numeric arrays reduced to the specified
page.

404

Basic Database Management: dbplot

Description

Example

dbplot
Plot from database

Syntax

[FF,AA,PDb] = dbplot(D,List,Range,...)

[FF,AA,PDb] = dbplot(D,Range,List,...)

[FF,AA,PDb] = dbplot(D,List,...)

[FF,AA,PDb] = dbplot(D,Range,...)

[FF,AA,PDb] = dbplot(D,...)

Input arguments

• D [struct] - Database with input data.

• List [cellstr | rexp] - List of expressions (or labelled expressions) that will be evaluated and
plotted in separate graphs; if not specified, all time series name found in the input database
D will be plotted. Alternatively, List can be a regular expression (rexp object), which will be
matched against all time series names in the input database.

• Range [numeric] - Date range; if not specified, the function dbrange P409 will be used to
determined the plotted range (same for all graphs).

Output arguments

• FF [numeric] - Handles to figures created by qplot.

• AA [cell] - Handles to axes created by qplot.

• PDB [struct] - Database with actually plotted series.

405

Basic Database Management: dbplot

Options

• ’addClick=’ [true | false] - Make axes expand in a new graphics figure upon mouse click.

• ’caption=’ [cellstr | @comment | *empty*] - Strings that will be used for titles in the graphs
that have no title in the q-file.

• ’clear=’ [numeric | empty] - Serial numbers of graphs (axes objects) that will not be
displayed.

• ’dbSave=’ [cellstr | empty] - Options passed to dbsave when ’saveAs=’ is used.

• ’deviationsFrom=’ [numeric | empty] - Each expression in List that starts with a @ or #

(see Description) will be reported in deviations from this specified date.

• ’deviationsTimes=’ [numeric | empty] - Used only if ’deviationsFrom=’ is non-empty; each
expression in List that starts with a @ or # (see Description) will be reported in deviations
multiplied by this number.

• ’drawNow=’ [true | false] - Call Matlab drawnow function upon completion of all figures.

• ’grid=’ [true | false] - Add grid lines to all graphs.

• ’highlight=’ [numeric | cell | empty] - Date range or ranges that will be highlighted.

• ’interpreter=’ [’latex’ | ‘none’] - Interpreter used in graph titles.

• ’mark=’ [cellstr | empty] - Marks that will be added to each legend entry to distinguish
individual columns of multivariated tseries objects plotted.

• ’maxPerFigure=’ [numeric | 36] - Maximum number of graphs in one figure window; if the
actual graph count exceeds maxPerFigure, the option ‘subplot=’ is adjusted automatically,
and new figure windows are opened as needed.

• ’overflow=’ [true | false] - Open automatically a new figure window if the number of
subplots exceeds the available total; ’overflow’ = false means an error will occur instead.

• ’plotFunc=’ [@bar | @hist | *@plot* | @plotcmp | @plotpred | @stem | cell] - Plot function
used to create the graphs; use a cell array, {plotFunc,...} to specify extra input arguments
that will be passed into the plotting function.

• ’prefix=’ [char | ’P%g_’] - Prefix (a sprintf format string) that will be used to precede
the name of each entry in the PDb database.

• ’round=’ [numeric | Inf] - Round the input data to this number of decimals before plotting.

• ’saveAs=’ [char | empty] - File name under which the plotted data will be saved either in a
CSV data file or a PS graphics file; you can use the ’dbsave=’ option to control the options
used when saving CSV.

406

Basic Database Management: dbplot

• ’style=’ [struct | empty] - Style structure that will be applied to all figures and their
children created by the qplot function.

• ’subplot=’ [‘auto’ | numeric] - Default subplot division of figures, can be modified in the
q-file.

• ’sstate=’ [struct | model | empty] - Database or model object from which the steady-state
values referenced to in the quick-report file will be taken.

• ’style=’ [struct | empty] - Style structure that will be applied to all created figures upon
completion.

• ’transform=’ [function_handle | empty] - Function that will be used to trans

• ’tight=’ [true | false] - Make the y-axis in each graph tight.

• ’vLine=’ [numeric | empty] - Dates at which vertical lines will be plotted.

• ’zeroLine=’ [true | false] - Add a horizontal zero line to graphs whose y-axis includes zero.

Description

The function dbplot opens a new figure window (as many as needed to accommodate all graphs
given the option ’subplot=’), and creates a graph for each entry in the cell array List.

List can contain the names of the database time series, expression referring to the database fields
evaluating to time series. You can also add labels (that will be displayed as graph titles) enclosed
in double quotes and preceding the expressions. At the beginning of the expression, you can use
one of the following marks:

• ˆ (a hat symbol) means the function specified in the option ’transform=’ will not be applied
to that expression;

• @ (an at symbol) in combination with the option ’deviationFrom=’ means that the deviations
will reported in multiplicative form (i.e. the actual value divided by the base period value).

• # (a hash symbol) in combination with the option ’deviationFrom=’ means that the devia-
tions will reported in additive form (i.e. the actual value minus the base period value).

Example

The following command will plot the time series x and y as deviations from 1 multiplied by 100 (see
the option ’transform=’), and the time series z as it is (because of the ˆ symbol at the beginning).
The first series will be labeled simply ’x’, while the last two series will be labeled ’Series y’ and
’Series z’, respectively.

407

Basic Database Management: dbprintuserdata

dbplot(d,qq(2010,1):qq(2015,4), ...

{ ’x’, ’"Series y" y’, ’^"Series z"’ }, ...

’transform=’,@(x) 100*(x-1));

Example

The following command will plot the time series x and y as deviations from year 2000; x will be
computed as additive deviations (i.e. the base period value will be subtracted from its observations)
whereas y will be computed as a multiplicative deviations (i.e. the observations will be divided by
the base period value). The last time series z will not be transforme.d

dbplot(d,yy(2000):yy(2010), ...

{ ’# x’, ’@ y’, ’z’ }, ...

’deviationsFrom=’,yy(2000));

Example

The following command will plot all time series found in the database that start with ’a’.

dbplot(d,rexp(’^a.*’));

dbprintuserdata
Print names of database tseries along with specified fields of their userdata

Syntax

dbprintuserdata(D,Fields,...)

Input arguments

• D [struct] - Database whose tseries objects will be reported.

• Fields [char | cellstr] - Names of the userdata fields whose content will printed (if char or
numeric scalar).

408

Basic Database Management: dbrange

Options

• ’output=’ [’html’ | ’prompt’] - Where to display the information.

Description

Example

dbrange
Find a range that encompasses the ranges of the listed tseries objects

Syntax

Input arguments marked with a ~ (tilde) sign may be omitted.

[Range,FreqList] = dbrange(D,~List,...)

Input arguments

• D [struct] - Input database.

• ~List [cellstr | rexp | @all] - List of time series that will be included in the range search or
a regular expression that will be matched to compose the list; @all means all tseries objects
existing in the input databases will be included; may be omitted.

Output arguments

• Range [numeric | cell] - Range that encompasses the observations of the tseries objects in
the input database; if tseries objects with different frequencies exist, the ranges are returned
in a cell array.

• FreqList [numeric] - Vector of date frequencies coresponding to the returned ranges.

Options

• ’startDate=’ [’maxRange’ | ’minRange’] - ’maxRange’ means the output Range will start
at the earliest start date among all time series included in the search; ’minRange’ means the
range will start at the latest start date.

409

Basic Database Management: dbsave

• ’endDate=’ [’maxRange’ | ’minRange’] - ’maxRange’ means the range will end at the latest
end date among all time series included in the search; ’minRange’ means the range will end
at the earliest end date.

Description

Example

dbredate
Redate all tseries objects in a database

Syntax

D = redate(D,OldDate,NewDate)

Input arguments

• D [struct] - Input database with tseries objects.

• OldDate [numeric] - Base date that will be converted to a new date in all tseries objects.

• NewDate [numeric] - A new date to which the base date OldDate will be changed in all tseries
objects; newDate need not be the same frequency as OldDate.

Output arguments

• d [struct] - Output database where all tseries objects have identical data as in the input
database, but with their time dimension changed.

Description

Example

dbsave
Save database as CSV file

410

Basic Database Management: dbsave

Syntax

List = dbsave(D,FName)

List = dbsave(D,FName,Dates,...)

Output arguments

• List [cellstr] - - List of actually saved database entries.

Input arguments

• D [struct] - Database whose tseries and numeric entries will be saved.

• FName [char] - Filename under which the CSV will be saved, including its extension.

• Dates [numeric | Inf] Dates or date range on which the tseries objects will be saved.

Options

• ’class=’ [true | false] - Include a row with class and size specifications.

• ’comment=’ [true | false] - Include a row with comments for tseries objects.

• ’decimal=’ [numeric | empty] - Number of decimals up to which the data will be saved; if
empty the ’format’ option is used.

• ’format=’ [char | ’%.8e’] - Numeric format that will be used to represent the data, see
sprintf for details on formatting, The format must start with a ’%’, and must not include
identifiers specifying order of processing, i.e. the ’$’ signs, or left-justify flags, the ’-’ signs.

• ’freqLetters=’ [char | ’YHQBM’] - Five letters to represent the five possible date frequencies
(annual, semi-annual, quarterly, bimonthly, monthly).

• ’matchFreq=’ [true | false] - Save only the tseries whose date frequencies match the input
vector of dates, Dates.

• ’nan=’ [char | ’NaN’] - String that will be used to represent NaNs.

• ’saveSubdb=’ [true | false] - Save sub-databases (structs found within the struct D); the
sub-databases will be saved to separate CSF files.

• ’userData=’ [char | ‘userdata’] - Field name from which any kind of userdata will be read
and saved in the CSV file.

411

Basic Database Management: dbsave

Description

The data saved include also imaginary parts of complex numbers.

Saving user data with the database

If your database contains field named ’userdata=’, this will be saved in the CSV file on a separate
row. The ’userdata=’ field can be any combination of numeric, char, and cell arrays and 1-by-1
structs.

You can use the ’userdata=’ field to describe the database or preserve any sort of metadata. To
change the name of the field that is treated as user data, use the ’userData=’ option.

Example

Create a simple database with two time series.

d = struct();

d.x = tseries(qq(2010,1):qq(2010,4),@rand);

d.y = tseries(qq(2010,1):qq(2010,4),@rand);

Add your own description of the database, e.g.

d.userdata = {’My database’,datestr(now())};

Save the database as CSV using dbsave,

dbsave(d,’mydatabase.csv’);

When you later load the database,

d = dbload(’mydatabase.csv’)

d =

userdata: {’My database’ ’23-Sep-2011 14:10:17’}

x: [4x1 tseries]

y: [4x1 tseries]

the database will preserve the ’userdata=’ field.

412

Basic Database Management: dbsearchuserdata

Example

To change the field name under which you store your own user data, use the ’userdata=’ option
when running dbsave,

d = struct();

d.x = tseries(qq(2010,1):qq(2010,4),@rand);

d.y = tseries(qq(2010,1):qq(2010,4),@rand);

d.MYUSERDATA = {’My database’,datestr(now())};

dbsave(d,’mydatabase.csv’,Inf,’userData=’,’MYUSERDATA’);

The name of the user data field is also kept in the CSV file so that dbload works fine in this case,
too, and returns a database identical to the saved one,

d = dbload(’mydatabase.csv’)

d =

MYUSERDATA: {’My database’ ’23-Sep-2011 14:10:17’}

x: [4x1 tseries]

y: [4x1 tseries]

dbsearchuserdata
Search database to find tseries by matching the content of their userdata fields

Syntax

[List,SubD] = dbsearchuserdata(D,Field1,Regexp1,Field2,Regexp2,...)

[List,SubD] = dbsearchuserdata(D,Flag,Field1,Regexp1,Field2,Regexp2,...)

Input arguments

• D [struct] - Input database whose tseries fields will be searched.

• Flag [’-all’ | ’-any’] - Specifies if all conditions or any condition must be met for the
series to pass the test; if not specified, ’-all’ is assumed.

• Field1, Field2, . . . [char] - Names of fields in the userdata struct.

413

Basic Database Management: dbsplit

• Regexp1, Regexp2, . . . [char] - Regular expressions against which the respective userdata
fields will be matched.

Output arguments

• List [cellstr] - Names of tseries that pass the test.

• Subd [struct] - Sub-database with only those tseries that pass the test.

Description

For a successful match, the userdata must be a struct, and the tested fields must be text strings.

Use an equal sign, =, after the name of the userdata fields in Field1, Field2, etc. to request a
case-insensitive match, and an equal-shart sign, =#, to indiciate a case-sensitive match.

Example

[list,dd] = dbsearchuserdata(d,’.DESC=’,’Exchange rate’,’.SOURCE=#’,’IMF’);

Each individual tseries object in the database D will be tested for two conditions:

• whether its user data is a struct including a field named DESC, and the field contains a string
’Exchange rate’ in it (case insensitive, e.g. ’eXcHaNgE rAtE’ will also be matched);

• whether its user data is a struct including a field named SOURCE, and the field contains a
string ’IMF’ in it (case sensitive, e.g. ’Imf’ will not be matched).

All tseries object that pass both of these conditions are returned in the List and the output
database D.

dbsplit
Split database into mutliple databases

Syntax

[D1,D2,...,DN,D] = dbsplit(D,Rule1,Rule2,...,RuleN,...)

414

Basic Database Management: dbsplit

Input arguments

• D [struct] - Input database that will be split.

• Rule1, Rule2, . . . , RuleN [cellstr] - Each rule is a 1-by-2 cell array, {testRex,newName}, where
testRex is a test regexp pattern to select entries from the input database, D, for inclusion in
the K-th output database, and newName is a new name pattern that will be used to name the
entry in the output database.

Output arguments

• D1, D2, . . . , DN [struct] - Output databases.

• D [struct] - Input database with remaining fields (if ’discard=’ true) or the original input
database (if ’discard=’ false).

Options

• ’discard=’ [true | false] - Discard input database entries when they are included in
an output database, and do not re-use them in other output databases; if false, an input
database entry can occur in more than one output databases.

Description

The test regexp pattern and the new name pattern in each rule work as an expression-replace pair
in regexprep – see doc regexprep. The test patterns is a regexp string where you can capture
tokens (...) for use in the new name pattern, $1, $2, etc.

Example

The database D contains time series for two regions, US and EU:

D =

US_GDP: [40x1 tseries]

US_CPI: [40x1 tseries]

EU_GDP: [40x1 tseries]

EU_CPI: [40x1 tseries]

We split the database into two separate databases, one with US data only, the other with EU data
only. We also strip the time series names of the country prefixes in the new databases.

415

Basic Database Management: minus

[US,EU,DD[] = dbsplit(D,{’^US_(.*)’,’$1’},{’^EU_(.*)’,’$1’})

US =

GDP: [40x1 tseries]

CPI: [40x1 tseries]

EU =

CPI: [40x1 tseries]

GDP: [40x1 tseries]

DD =

struct with no fields.

dbuserdatalov
List of values found in a specified user data field in tseries objects

Syntax

LOV = dbuserdatalov(D,FIELD)

Input arguments

• D [struct] - Input database whose tseries objects will be searched.

• FIELD [char] - Name of a userdata field whose values will be collected across all tseries
objects.

Output arguments

• LOV [cellstr] - List of values found in the field FIELD of all tseries objects; only char values
(text strings) are included; each value is included only once in LOV.

Description

Example

416

Basic Database Management: mtimes

minus
Remove entries from a database

Syntax

D = D - List

Input arguments

• D [struct] - Input database from which some entries will be removed.

• List [char | cellstr] - List of entries that will be removed from D.

Output arguments

• D [struct] - Output database with entries listed in List removed from it.

Description

This functino works the same way as the built-in function rmfield except it does not throw an
error when some of the entries listed in List are not found in D.

Example

mtimes
Keep only the database entries that are on the list

Syntax

D = D * List

Input arguments

• D [struct] - Input database.

• List [cellstr] - List of entries that will be kept in the output database.

417

Basic Database Management: xls2csv

Output arguments

• D [struct] - Output database where only the input entries that are in the List are included.

Description

Example

plus
Merge entries from two databases together

Syntax

D = D1 + D2

Input arguments

• D1 [struct] - First input database.

• D2 [struct] - Second input database.

Output arguments

• D [struct] - Output database with entries from both input database; if the same entry name
exists in both databases, the second database is used.

Description

Example

xls2csv
Convert XLS file to CSV file

418

Basic Database Management: xls2csv

Syntax

xls2csv(InpFile)

xls2csv(InpFile,OutpFile,...)

Input arguments

• InpFile [char] - Name of an XLS input file that will be converted to CSV.

• OutpFile [empty | char] - Name of the CSV output file; if not supplied or empty, the CSV
file name will be derived from the XLS input file name.

Options

• ’sheet=’ [numeric | char | 1] - Worksheet in the XLS file that will be saved; can be either
the sheet number or the sheet name.

Description

This function calls a third-party JavaScript (courtesy of Christopher West). The script uses an MS
Excel application on the background, and hence MS Excel must be installed on the computer.

Only one worksheet at a time can be saved to CSV. By default, it is the first worksheet found in
the input XLS file; use the option ’sheet=’ to control which worksheet will be saved.

See also $irisroot/+thirdparty/xls2csv.js for copyright information.

Example

Save the first worksheets of the following XLS files to CSV files.

xls2csv(’myDataFile.xls’);

xls2csv(’C:\Data\myDataFile.xls’);

Example

Save the worksheet named ‘Sheet3’ to a CSV file; the name of the CSV file will be ’myDataFile.csv’.

xls2csv(’myDataFile.xls’,[],’sheet=’,’Sheet3’);

419

Basic Database Management: xls2csv

Example

Save the second worksheet to a CSV file under the name ’myDataFile_2.csv’.

xls2csv(’myDataFile.xls’,’myDataFile_2.csv,’sheet=’,2);

420

Part V —

Reporting and Publishing

421

PDF Reports (report Package and Objects)

21 PDF Reports (report Package and Objects)

New report

• new P446 - Create new empty report object.
• copy P429 - Create a copy of a report object.

Compiling PDF report

• publish P447 - Compile PDF from report object.

Top-level objects

• table P455 - Start new table.
• figure P433 - Start new figure.
• userfigure P460 - Insert existing figure window.
• matrix P440 - Insert matrix or numeric array.
• modelfile P444 - Write formatted model file.
• array P425 - Insert array with user data.
• tex P459 - Include LATEX code or verbatim input in report.

Inspecting and maninpulating report objects

• disp P430 - Display the structure of report object.
• display P430 - Display the structure of report object.
• findall P435 - Find all objects of a given type within report object.

Figure objects

• graph P436 - Add graph to figure.

Table and graph objects

• band P428 - Add new data with lower and upper bounds to graph or table.
• fanchart P432 - Add fanchart to graph.
• series P450 - Add new data to graph or table.
• subheading P454 - Enter subheading in table.
• vline P461 - Add vertical line to graph.
• highlight P438 - Highlight range in graph.

422

PDF Reports (report Package and Objects): align

Structuring reports

• align P423 - Vertically align the following K objects.
• empty P431 - Empty report object.
• include P439 - Include text or LaTeX input file in the report.
• merge P444 - Merge the content of two or more report objects.
• pagebreak P446 - Force page break.
• section P449 - Start new section in report.

Getting on-line help on report functions

help report

help report/function_name

Generic options

The following generic options can be used on any of the report objects.

• ’inputFormat=’ [*’plain’ | ’latex’] - Input format for user supplied text strings (such as
captions, headings, footnotes, etc); ’latex’ means they are assumed to be valid LATEXstrings,
and will be inserted straight into the report code with no modification.

• ’saveAs=’ [char | empty] - (Not inheritable from parent objects) Save the LaTeX code
generated for the respective report element in a text file under the specified name.

align
Vertically align the following K objects

Syntax

P.align(Caption,K,NCol,...)

Input arguments

• P [struct] - Report object created by the report.new P446 function.

423

PDF Reports (report Package and Objects): array

• Caption [char] - Caption displayed only when describing the structure of the report on the
screen, but not in the actual PDF report.

• K [numeric] - Number of objects following this align that will be vertically aligned.

• NCol [numeric] - Number of columns in which the objects will vertically aligned.

Options

• ’hspace=’ [numeric | 2] - Horizontal space (in em units) inserted between two neighbouring
objects.

• ’separator=’ [char | ’\medskip\par’] - (Inheritable from parent objects) LATEX commands
that will be inserted after the aligned objects.

• ’shareCaption=’ [’auto’ | true | false] - (Inheritable from parent objects) Place a shared
caption (title and subtitle) over each row of objects; the title of the first object in each row
is used; ’auto’ means that the caption will be shared if they are identical for all objects in a
row.

• ’typeface=’ [char | empty] - (Not inheritable from parent objects) LATEX code specifying
the typeface for the align element as a whole; it must use the declarative forms (such as
\itshape) and not the command forms (such as \textit{...}).

Description

Vertically aligned can be the following types of objects:

• figure P433

• table P455

• matrix P440

• array P425

Note that the align object itself has no caption (even if you specify one it will not be used). Only
the objects within align will be given captions. If the objects aligned on one row have identical
captions (i.e. both titles and subtitles), only one caption will be displayed centred above the objects.

Because empty P431 objects count in the total number of objects inluded in align, you can use
empty P431 in to create blank space in a particular position.

Example

424

PDF Reports (report Package and Objects): array

array
Insert array with user data

Syntax

P.array(Caption,Data)

Input arguments

• P [struct] - Report object created by the report.new P446 function.

• Caption [char | cellstr] - Title or a cell array with title and subtitle displayed at the top of
the array; see Description for splitting the title or subtitle into multiple lines.

• Data [cell] - Cell array with input data; numeric and text entries are allowed.

Options

• ’arrayStretch=’ [numeric | 1.15] - (Inherited) Stretch between lines in the array (in pts).

• ’captionTypeface=’ [cellstr | char | ’\large\bfseries’] - (Inherited) LATEX format com-
mands for typesetting the array caption; the subcaption format can be entered as the second
cell in a cell array.

• ’colWidth=’ [numeric | NaN] - (Inheritable from parent objects) Width, or a vector of widhts,
of the array columns in emunits; NaN means the width of the column will adjust automatically.

• ’format=’ [char | ’%.2f’] - (Inherited) Numeric format string; see help on the built-in
sprintf function.

• ’footnote=’ [char | empty] - (Inherited) Footnote at the array title; only shows if the title
is non-empty.

• ’heading=’ [char | cellstr | empty] - (Inherited) User-supplied heading, i.e. an extra row or
rows at the top of the array. The heading can be either a LATEX code, or a cell array whose
size is consistent with Data. The heading is repeated at the top of each new page when used
with ’long=’ true.

• ’inf=’ [char | ’∞’] - (Inherited) LATEX string that will be used to typeset Infs.

• ’long=’ [true | false] - (Inherited) If true, the array may stretch over more than one page.

• ’longFoot=’ [char | empty] - (Inherited) Footnote that appears at the bottom of the array
(if it is longer than one page) on each page except the last one; works only with ’long=’ true.

425

PDF Reports (report Package and Objects): array

• ’longFootPosition=’ [’centre’ | ’left’ | ’right’] - (Inherited) Horizontal alignment of
the footnote in long arrays; works only with ’long=’ true.

• ’nan=’ [char | ’\cdots’] - (Inherited) LATEX string that will be used to typeset NaNs.

• ’pureZero=’ [char | empty] - (Inherited) LATEX string that will be used to typeset pure zero
entries; if empty the zeros will be printed using the current numeric format.

• ’printedZero=’ [char | empty] - (Inherited) LATEX string that will be used to typeset the
entries that would appear as zero under the current numeric format used; if empty these
numbers will be printed using the current numeric format.

• ’separator=’ [char | ’\medskip\par’] - (Inherited) LATEX
commands that will be inserted after the array.

• ’sideways=’ [true | false] - (Inherited) Print the array rotated by 90 degrees.

• ’tabcolsep=’ [NaN | numeric] - (Inherited) Space between columns in the array, measured
in em units; NaN means the LATEX default.

• ’typeface=’ [char | empty] - (Not inherited) LATEX code specifying the typeface for the
array as a whole; it must use the declarative forms (such as \itshape) and not the command
forms (such as \textit{...}).

Generic options

See help on generic options P422 in report objects.

Description

The input cell array Data can contain either strings or numeric values, or horizontal rules. Numeric
values are printed using the standard sprintf function and formatted using the ’format=’ option.
Horizontal rules must be entered as a string of five (or more) dashes, ’-----’, in the first cell of
the respective row, with all other cells empty in that row. If you wish to include a LATEX command
or a piece of LATEX code, you must enclose it in curly brackets.

Titles and subtitles

The input argument Caption can be either a text string, or a 1-by-2 cell array of strings. In the
latter case, the first cell will be printed as a title, and the second cell will be printed as a subtitle.

To split the title or subtitle into multiple lines, use the following LaTeX commands wrapped in
curly brackets: {\\} or {\\[Xpt]}, where X is the width of an extra vertical space (in points) added
between the respective lines.

426

PDF Reports (report Package and Objects): array

Example

These commands create a table with two rows separated by a horizontal rule, and three columns
in each of them. The middle columns will have Greek letters printed in LATEX math mode.

x = report.new();

A = { ...

’First row’,’{\$\textbackslash alpha\$}’,10000; ...

’-----’,’’,’’; ...

’Second row’,’{\$\textbackslash beta\$}’,20000; ...

};

x.array(’My Table’,A);

x.publish(’test1.pdf’);

open test1.pdf;

Example

Use the option ’inputFormat=’ to change the way the input strings are interpreted. Compare the
two tables in the resulting PDF.

x = report.new();

A = { ...

1,2,3; ...

’α’,’b’,’c’, ...

};

x.array(’Table with Plain Input Format (Default)’,A, ...

’heading=’,{’A’,’B’,’Γ’;’-----’,’’,’’});

x.array(’Table with LaTeX Input Format’,A, ...

’heading=’,{’A’,’B’,’Γ’;’-----’,’’,’’}, ...

’inputFormat=’,’latex’);

x.publish(’test2.pdf’);

open test2.pdf;

427

PDF Reports (report Package and Objects): band

band
Add new data with lower and upper bounds to graph or table

Syntax

P.band(Caption,X,Low,High,...)

Input arguments

• P [struct] - Report object created by the report.new P446 function.

• Caption [char] - Caption used as a default legend entry in a graph, or in the leading column
in a table.

• X [tseries] - Input data with the centre of the band.

• Low [tseries] - Input data with lower bounds; can be specified either relative to the centre or
absolute, see the option ’relative=’.

• High [tseries] - Input data with upper bounds; can be specified either relative to the centre
or absolute, see the option ’relative=’.

Generic options

See help on generic options P422 in report objects.

Options for table and graph bands

• ’excludeFromLegend=’ [true | false] - Exclude bands around central lines from legend.

• ’high=’ [char | ‘High’] - (Inheritable from parent objects) Mark used to denote the upper
bound.

• ’low=’ [char | ‘Low’] - (Inheritable from parent objects) Mark used to denote the lower
bound.

• ’relative=’ [true | false] - (Inheritable from parent objects) If true, the data for the lower
and upper bounds are relative to the centre, i.e. the bounds will be added to the centre (in
this case, LOW must be negative numbers and HIGH must be positive numbers). If false, the
bounds are absolute data (in this case LOW must be lower than X, and HIGH must be higher
than X).

428

PDF Reports (report Package and Objects): copy

Options for table bands

• ’bandTypeface=’ [char | ’\footnotesize’] - (Inheritable from parent objects) LaTeX format
string used to typeset the lower and upper bounds.%

Options for graph bands

• ’plotType=’ [’errorbar’ | ’patch’] - Type of plot used to draw the band.

• ’relative=’ [true | false] - (Inheritable from parent objects) If true the lower and upper
bounds will be, respectively, subtracted from and added to to the middle line.

• ’white=’ [numeric | 0.85] - (Inheritable from parent objects) Proportion of white colour
mixed with the center line color and used to fill the band area.

See help on report/series P450 for other options available.

Description

Example

copy
Create a copy of a report object

Syntax

Q = copy(P)

Input arguments

• P [report] - Report object whose copy will be created.

Output arguments

• Q [report] - Copy of the input report object.

429

PDF Reports (report Package and Objects): disp

Description

Because report is a handle class object, a plain assignment

Q = P;

creates a handle to the same copy of a report object. In other words, changes in Q will also change
P and vice versa. To make a new, independent copy of an existing report object, you need to run

Q = copy(P);

disp
Display the structure of report object

Syntax

X

Input arguments

• X [report] - Report object.

Description

Example

disp
Display the structure of report object

Syntax

disp(X)

430

PDF Reports (report Package and Objects): fanchart

Input arguments

• X [report] - Report object.

Description

Example

empty
Empty report object

Syntax

P.empty()

P.empty(Caption,...)

Input arguments

• P [struct] - Report object created by the report.new P446 function.

• Caption [char] - Caption for the empty objet; the caption is only displayed in the on-screen
report structure.

Generic options

See help on generic options P422 in report objects.

Description

The empty object does not produce any visible output in the report. It can be used in align P423

or figure P433 to create blank space.

Example

431

PDF Reports (report Package and Objects): fanchart

fanchart
Add fanchart to graph

Syntax

P.fanchart(Cap,X,Std,Prob,...)

Input arguments

• P [struct] - Report object created by the report.new P446 function.

• Cap [char] - Caption used as a legend entry for the line (mean of fanchart)

• X [tseries] - Tseries object with input data to be displayed.

• Std [tseries] - Tseries object with standard deviations of input data.

• Prob [numeric] - Confidence porbabilities of intervals to be displayed.

Options for fancharts

• ’asym=’ [numeric | tseries | 1] - Ratio of asymmetry (area of upper part to one of lower
part).

• ’exclude=’ [numeric | true | false] - Exclude some of the confidence intervals.

• ’factor=’ [numeric | 1] - factor to increase or decrease input standard deviations

• ’fanLegend=’ [cell | NaN | Inf] - Legend entries used instead of confidence interval values; Inf
means all confidence intervals values will be used to construct legend entries; NaN means the
intervals will be exluded from legend; NaN in cellstr means the intervals of respective fancharts
will be exluded from legend.

See help on report/series P450 for other options available.

Description

The confidence intervals are based on normal distributions with standard deviations supplied by
the user. Optionally, the user can also specify assumptions about asymmetry and/or common
correction factors.

432

PDF Reports (report Package and Objects): figure

Example

figure
Start new figure

Syntax

P.figure(Caption,...)

Syntax to capture an existing figure window

This is an obsolete syntax, and will be removed from IRIS in a future release. Use report/userfigure P460

instead.

P.figure(Caption,H,...)

Input arguments

• P [struct] - Report object created by the report.new P446 function.

• Caption [char | cellstr] - Title or a cell array with title and subtitle displayed at the top of
the figure; see Description for splitting the title or subtitle into multiple lines.

• H [numeric] - See help on report/userfigure P460 .

Options

• ’aspectRatio=’ [@auto | numeric] - Plot box aspect ratio for all graphs in the figure; must
be a 1-by-2 vector describing the horizontal-to-vertical ratio.

• ’captionTypeface=’ [cellstr | char | ’\large\bfseries’] - LaTeX format commands for
typesetting the figure caption; the subcaption format can be entered as the second cell in a
cell array.

• ’close=’ [true | false] - (Inheritable from parent objects) Close the underlying figure
window when finished; see Description.

433

PDF Reports (report Package and Objects): figure

• ’separator=’ [char | ’\medskip\par’] - (Inheritable from parent objects) LaTeX commands
that will be inserted after the figure.

• ’figureOpt=’ [cell | empty] - Figure options that will be applied to the figure handle at
opening.

• ’figureScale=’ [numeric | 0.85] - (Inheritable from parent objects) Scale of the figure in
the LaTeX document.

• ’figureTrim=’ [numeric | 0] - Trim figure when it is inserted into the report by the specified
amount of points; must be either a scalar or a 1-by-4 vector (points removed from left, bottom,
right, top).

• ’footnote=’ [char | empty] - Footnote at the figure title; only shows if the title is non-empty.

• ’sideways=’ [true | false] - (Inheritable from parent objects) Print the table rotated by 90
degrees.

• ’style=’ [struct | empty] - Apply this cascading style structure to the figure; see grfun.style P?? .

• ’subplot=’ [numeric | ’auto’] - (Inheritable from parent objects) Subplot division of the
figure.

• ’typeface=’ [char | empty] - (Not inheritable from parent objects) LaTeX code specifying
the typeface for the figure as a whole; it must use the declarative forms (such as \itshape)
and not the command forms (such as \textit{...}).

• ’visible=’ [true | false] - (Inheritable from parent objects) Visibility of the underlying
Matlab figure window.

Generic options

See help on generic options P422 in report objects.

Description

Figures are top-level report objects and cannot be nested within other report objects, except
align P423 . Figure objects can have the following types of children:

• graph P436 ;
• empty P431 .

434

PDF Reports (report Package and Objects): graph

Titles and subtitles

The input argument Caption can be either a text string, or a 1-by-2 cell array of strings. In the
latter case, the first cell will be printed as a title, and the second cell will be printed as a subtitle.

To split the title or subtitle into multiple lines, use the following LaTeX commands wrapped in
curly brackets: {\\} or {\\[Xpt]}, where X is the width of an extra vertical space (in points) added
between the respective lines.

Figure handle

If the option ’close=’ is set to false the figure window will remain open after the report is
published. The handle to this figure window will be included in the field .figureHandle of the
information struct Info returned by report/publish P447 .

Example

findall
Find all objects of a given type within report object

Syntax

Obj = findall(X,Type1,Type2,...)

Input arguments

• X [report] - Report object.

• Type1, Type2 [char] - Names of report objects that will be looked for in report X.

Output arguments

• Obj [cell] - Cell array of all objects of the give type(s) found in report X.

Description

Example

435

PDF Reports (report Package and Objects): graph

graph
Add graph to figure

Syntax

P.graph(Cap,...)

Input arguments

• P [struct] - Report object created by the report.new P446 function.

• Cap [char | cellstr | @auto] - Title, or cell array with title and subtitle, displayed at the top
of the graph; @auto means that the first comment from the first child series object will be
used for the title.

Options

• ’axesOptions=’ [cell | empty] - (Inheritable) Options executed by calling set on the axes
handle before running ’postProcess=’.

• ’dateTick=’ [numeric | Inf] - (Inheritable) Date tick spacing.

• ’grid=’ [@auto | true | false] - (Inheritable) Display grid lines; if @auto, ’grid=’ is true

unless a right-hand-side axis is plotted.

• ’legend=’ [false | true] - (Inheritable) Add legend to the graph.

• ’legendLocation=’ [char | ’best’ | ’bottom’] - (Inheritable) Location of the legend box; see
help on legend for values available.

• ’postProcess=’ [char | empty] - (Inheritable) String with Matlab commands executed after
the graph has been drawn and styled; see Description.

• ’preProcess=’ [char | empty] - (Inheritable) String with Matlab commands executed before
the graph has been drawn and styled; see Description.

• ’range=’ [numeric | Inf] - (Inheritable) Graph range.

• ’rhsAxesOptions=’ [cell | empty] - (Inheritable) Options executed by calling set on the
RHS axes handle before running ’postProcess=’.

• ’style=’ [struct | empty] - (Inheritable) Apply this style structure to the graph and its
children; see help on grfun.style P?? .

436

PDF Reports (report Package and Objects): graph

• ’tight=’ [@auto | true | false] - (Inheritable) Set the y-axis limits to the minimum and
maximum of displayed data; if @auto, ’tight=’ is true unless a right-hand-side axis is plotted.

• ’xLabel=’ [char | empty] - Label the x-axis.

• ’yLabel=’ [char | empty] - Label the y-axis.

• ’zeroLine=’ [true | false | cell] - (Inheritable) Add a horizontal zero line if zero is included
on the y-axis; specify zeroline options in a cell array.

Date format options

See dat2str P280 for details on date format options.

• ’dateFormat=’ [char | cellstr | ’YYYYFP’] - Date format string, or array of format strings
(possibly different for each date).

• ’freqLetters=’ [char | ’YHQBMW’] - Six letters used to represent the six possible frequencies
of IRIS dates, in this order: yearly, half-yearly, quarterly, bi-monthly, monthly, and weekly
(such as the ’Q’ in ’2010Q1’).

• ’months=’ [cellstr | {’January’,...,’December’}] - Twelve strings representing the names
of the twelve months.

• ’standinMonth=’ [numeric | ’last’ | 1] - Month that will represent a lower-than-monthly-
frequency date if the month is part of the date format string.

Generic options

See help on generic options P422 in report objects.

Description

The options ’preProcess=’ and ’postProcess=’ give you additional flexibility in customising the
graphics style of the axes object. The values assigned to these options are expected to be strings
with an executable Matlab command, or commands separated with semi-colons (as if typed on one
line in the command window). The command can refer to the following variables:

• H - a handle to the currently processed axes object.
• L - a handle to the corresponding legend object; if no legend object exists for the axes H, L
will be NaN.

437

PDF Reports (report Package and Objects): highlight

Example

Create a one-page report with a chart in on the LHS and the legend moved to the RHS. Use the
function grfun.movetosubplot in the option ’postProcess=’, referring to L (handle to the legend
object associated with the respective axes object) to move the legend around.

% Create random data series.

A = tseries(1:10,@rand);

B = tseries(1:10,@rand);

% Open a new report.

x = report.new();

% Open a new figure in the report with a 1-by-2 layout.

x.figure(’My Figure’,’subplot=’,[1,2]);

% The graph will be placed in the LHS space.

% Use ‘grfun.movetosubplot‘ to move the legend to the RHS space.

x.graph(’My Graph’,’legend=’,true, ...

’postProcess=’,’grfun.movetosubplot(L,1,2,2)’);

x.series(’Series A’,A);

x.series(’Series B’,B);

x.publish(’test.pdf’);

open test.pdf;

highlight
Highlight range in graph

Syntax

P.highlight(Caption,Range,...)

Input arguments

• P [struct] - Report object created by the report.new P446 function.

438

PDF Reports (report Package and Objects): include

• Caption [char] - Caption used to annotate the highlighted area.

• Range [cell | numeric] - Date range, or a cell array of ranges, that will be highlighted.

Options

• ’hPosition=’ [’centre’ | ’left’ | ’right’] - (Inheritable from parent objects) Horizontal
position of the caption.

• ’vPosition=’ [’bottom’ | ’middle’ | ’top’] - (Inheritable from parent objects) Vertical
position of the caption relative to the edges of the highlighted area.

Generic options

See help on generic options P422 in report objects.

Description

Example

include
Include text or LaTeX input file in the report

Syntax

P.include(Caption,FileName,...)

Input arguments

• P [struct] - Report object created by the function report.new P446 .

• Caption [char] - Caption displayed at the top of the file included.

• FileName [char] - File name that will be included here.

439

PDF Reports (report Package and Objects): matrix

Options

• ’centering=’ [true | false] - (Inheritable from parent objects) Centre the content of the
file on the page.

• ’separator=’ [char | empty] - (Not inheritable from parent objects) LATEX commands that
will be inserted after the table.

• ’typeface=’ [char | empty] - (Not inheritable from parent objects) LATEX code specifying
the typeface for the include element as a whole; it must use the declarative forms (such as
\itshape) and not the command forms (such as \textit{...}).

• ’verbatim=’ [true | false] - (Not inheritable from parent objects) Enclose the content of
the file in a verbatim environment.

Generic options

See help on generic options P422 in report objects.

Description

Example

matrix
Insert matrix or numeric array

Syntax

P.matrix(Caption,Data,...)

Input arguments

• P [struct] - Report object created by the report.new P446 function.

• Caption [char | cellstr] - Title or a cell array with title and subtitle displayed at the top of
the matrix; see Description for splitting the title or subtitle into multiple lines.

• Data [numeric] - Numeric array with input data.

440

PDF Reports (report Package and Objects): matrix

Options

• ’arrayStretch=’ [numeric | 1.15] - (Inheritable from parent objects) Stretch between lines
in the matrix (in pts).

• ’captionTypeface=’ [cellstr | char | *’’*] - LATEX
format commands for typesetting the matrix caption; the subcaption
format can be entered as the second cell in a cell array.

• ’colNames=’ [cellstr | empty] - (Inheritable from parent objects)
Names for individual matrix columns, displayed at the top of the
matrix.

• ’colWidth=’ [numeric | NaN] - (Inheritable from parent objects) Width,
or a vector of widhts, of the matrix columns in emunits; NaN means the
width of the column will adjust automatically.

• ’condFormat=’ [struct | empty] - (Inheritable from parent objects)
Structure with .test and .format fields describing conditional format-
ting of individual matrix entries.

• ’footnote=’ [char | empty] - Footnote at the matrix title; only shows
if the title is non-empty.

• ’format=’ [char | ’%.2f’] - (Inheritable from parent objects) Numeric
format string; see help on the built-in sprintf function.

• ’heading=’ [char | empty] - (Inheritable from parent objects) User-
supplied heading, i.e. an extra row or rows at the top of the matrix.

• ’inf=’ [char | ’∞’] - (Inheritable from parent objects) LATEX string
that will be used to typeset Infs.

• ’long=’ [true | false] - (Inheritable from parent objects) If true, the
matrix may stretch over more than one page.

• ’longFoot=’ [char | empty] - (Inheritable from parent objects) Works
only with ’long=’ true: Footnote that appears at the bottom of the
matrix (if it is longer than one page) on each page except the last
one.

441

PDF Reports (report Package and Objects): matrix

• ’longFootPosition=’ [’centre’ | ’left’ | ’right’] - (Inheritable from
parent objects) Works only with ’long=’ true: Horizontal alignment
of the footnote in long matrices.

• ’nan=’ [char | ’\cdots’] - (Inheritable from parent objects) LATEX string
that will be used to typeset NaNs.

• ’pureZero=’ [char | empty] - (Inheritable from parent objects) LATEX string
that will be used to typeset pure zero entries; if empty the zeros will
be printed using the current numeric format.

• ’printedZero=’ [char | empty] - (Inheritable from parent objects)
LATEX string that will be used to typeset the entries that would ap-
pear as zero under the current numeric format used; if empty these
numbers will be printed using the current numeric format.

• ’rotateColNames=’ [true | false | numeric] - Rotate the names of
columns by the specified number of degrees; true means rotate by 90
degrees.

• ’rowNames=’ [cellstr | empty] - (Inheritable from parent objects)
Names fr individual matrix rows, displayed left of the matrix.

• ’separator=’ [char | ’\medskip\par’] - (Inheritable from parent ob-
jects) LATEX commands that will be inserted after the matrix.

• ’sideways=’ [true | false] - (Inheritable from parent objects) Print
the matrix rotated by 90 degrees.

• ’tabcolsep=’ [NaN | numeric] - (Inheritable from parent objects) Space
between columns in the matrix, measured in em units; NaN means the
LATEX default.

• ’typeface=’ [char | empty] - (Not inheritable from parent objects)
LATEX code specifying the typeface for the matrix as a whole; it must
use the declarative forms (such as \itshape) and not the command
forms (such as \textit{...}).

Generic options

See help on generic options P422 in report objects.

442

PDF Reports (report Package and Objects): matrix

Description

Conditional formatting

The conditional format struct (or an array of structs) specified through the ’condFormat=’ option
must have two fields, .test and .format.

The .test field is a text string with a Matlab expression. The expression must evaluate to a scalar
true or false, and can refer to the following attributes associated with each entry in the data part
of the matrix:

• value - the numerical value of the entry;
• row - the row number within the data part of the matrix;
• col - the column number within the data part of the matrix;
• rowname - the row name right of which the entry appears;
• colname - the column name under which the entry appears;
• rowvalues - a row vector of all values in the current row;
• colvalues - a column vector of all values in the current column;
• allvalues - a matrix of all values.

You can combine a number of attribues within one test, using the logical operators, e.g.

value > 0 && row > 3

value == max(rowvalues) && strcmp(rowname,’x’)

The .format fields of the conditional format structure consist of LaTeX commands that will be use
to typeset the corresponding entry. The reference to the entry itself is through a question mark.
The entries are typeset in math mode; this for instance meanse that for bold or italic typface, you
must use the \mathbf{...} and \mathit{...} commands.

In addition to standard LaTeX commands, you can use the following IRIS commands in the format
strings:

• \sprintf{FFFF} - to modify the way each numeric entry that passes the test is printed by the
sprintf function; FFFF is one of the standard sprintf formattting strings.

You can combine multiple tests and their correponding formats in one structure; they will be all
applied to each entry in the specified order.

Titles and subtitles

The input argument Caption can be either a text string, or a 1-by-2 cell array of strings. In the
latter case, the first cell will be printed as a title, and the second cell will be printed as a subtitle.

443

PDF Reports (report Package and Objects): modelfile

To split the title or subtitle into multiple lines, use the following LaTeX commands wrapped in
curly brackets: {\\} or {\\[Xpt]}, where X is the width of an extra vertical space (in points) added
between the respective lines.

Example

merge
Merge the content of two or more report objects

Syntax

P.merge(P1,P2,...)

Input arguments

• P [report] - Report object created by the report.new P446 function.

• P1, P2 [report] - Other report objects whose contents will be added to P in order of appearance.

Description

Example

modelfile
Write formatted model file

Syntax

P.modelfile(Caption,FileName,...)

P.modelfile(Caption,FileName,M,...)

444

PDF Reports (report Package and Objects): new

Input arguments

• P [report] - Report object created by the report.new P446 function.

• Caption [char | cellstr] - Title and subtitle displayed at the top of the table.

• FileName [char] - Model file name.

• M [model] - Model object from which the values of parameters and std devs of shocks will
be read; if missing no parameter values or std devs will be printed.

Options

• ’latexAlias=’ [true | false] - Treat alias in labels as LaTeX code and typeset it that way.

• ’lines=’ [numeric | @all] - Print only selected lines of the model file FileName; @all means
all lines will be printed.

• ’lineNumbers=’ [true | false] - Display line numbers.

• ’footnote=’ [char | empty] - Footnote at the model file title; only shows if the title is
non-empty.

• ’paramValues=’ [true | false] - Display the values of parameters and std devs of shocks
next to each occurence of a parameter or a shock; this option works only if a model object M
is entered as the 3rd input argument.

• ’syntax=’ [true | false] - Highlight model file syntax; this includes model language key-
words, descriptions of variables, shocks and parameters, and equation labels.

• ’typeface=’ [char | empty] - (Not inheritable from parent objects) LaTeX code specifying
the typeface for the model file as a whole; it must use the declarative forms (such as \itshape)
and not the command forms (such as \textit{...}).

Description

If you enter a model object with multiple parameterisations, only the first parameterisation will
get reported.

At the moment, the syntax highlighting in model file reports does not handle correctly comment
blocks, i.e. %{ ... %}.

Example

445

PDF Reports (report Package and Objects): pagebreak

new
Create new empty report object

Syntax

P = report.new(Cap,...)

Output arguments

• P [struct] - Report object with function handles through wich the individual report elements
can be created.

• Cap [char] - Report caption; the caption will also be printed on the title page of the report
if published with the option ’makeTitle=’ true.

Options

• ’centering=’ [true | false] - All report elements, except tex P459 , will be centered on the
page.

• ’orientation=’ [’landscape’ | ‘portrait’] - Paper orientation of the published report.

Report options are cascading. You can specify any of an object’s options in any of his parent (or
ascendant) objects.

pagebreak
Force page break

Syntax

P.pagebreak(Caption,...)

Input arguments

• P [report] - Report object created by the report.new P446 function.

• Caption [char] - Caption for the pagebreak objet; the caption only displays in the on-screen
report structure.

446

PDF Reports (report Package and Objects): publish

Generic options

See help on generic options P422 in report objects.

Description

Example

publish
Compile PDF from report object

Syntax

[OutpFile,Info] = P.publish(InpFile,...)

Input arguments

• P [struct] - Report object created by the report.new function.

• InpFile [char] - File name under which the compiled PDF will be saved.

Output arguments

• OutpFile [char] - Name of the resulting PDF.

• Info [struct] - Information struct with details of building the PDF report; see Description.

Options

• ’abstract=’ [char | empty] - Abstract that will displayed on the title page.

• ’abstractWidth=’ [numeric | 1] - Width of the abstract on the page as a percentage of the
full default width (between 0 and 1).

• ’author=’ [char | empty] - List of authors on the title page separated with \and or \\.

• ’cleanup=’ [true | false] - Delete all temporary files created when compiling the report.

447

PDF Reports (report Package and Objects): publish

• ’compile=’ [true | false] - Compile the source files to an actual PDF; if false only the
source files are created.

• ’date=’ [char | ’\today’] - Date on the title page.

• ’display=’ [true | false] - Display the LATEXcompiler report on the final iteration.

• ’echo=’ [true | false] - If true, the optional flag ’-echo’ will be used in the Matlab
function system when compiling the PDF; this causes the screen output and all prompts to
be displayed for each run of the compiler.

• ’epsToPdf=’ [char | Inf] - Command line arguments for EPSTOPDF; Inf means OS-specific
arguments are used.

• ’fontEnc=’ [char | ’T1’] - LATEX font encoding.

• ’makeTitle=’ [true | false] - Produce title page (with title, author, date, and abstract).

• ’package=’ [char | cellstr | empty] - Package or list of packages that will be imported in the
preamble of the LaTeX file.

• ’paperSize=’ [’a4paper’ | ’letterpaper’] - Paper size.

• ’orientation=’ [’landscape’ | ’portrait’] - Paper orientation.

• ’preamble=’ [char | empty] - LATEX commands that will be placed in the LATEX file preamble.

• ’timeStamp=’ [char | ’datestr(now())’] - String printed in the top-left corner of each page.

• ’tempDir=’ [char | function_handle | tempname(pwd())] - Directory for storing temporary
files; the directory is deleted at the end of the execution if it’s empty.

• ’maxRerun=’ [numeric | 5] - Maximum number of times the LATEX
compiler will be run to resolve cross-references, etc.

• ’minRerun=’ [numeric | 1] - Minimum number of times the LATEX
compiler will be run to resolve cross-references, etc.

• ’textScale=’ [numeric | 0.8] - Percentage of the total page area that will be used; the value
can be either a scalar (the same percentage for the width and the height) or a 1-by-2 vector
(the width and the height).

Description

Difference between ’display=’ and ’echo=’

There are two differences between these otherwise similar options:

448

PDF Reports (report Package and Objects): section

• When publishing the final PDF, the PDFLaTeX compiler may be called more than once
to resolve cross-references, the table of contents, and so on. Setting ’display=’ true only
displays the screen output from the final iteration only, while ’echo=’ true displays the
screen outputs from all iterations.

• In the case of a compiler error unrelated to the LATEX code, the compiler may stop and prompt
the user to respond. The prompt only appears on the screen when ’echo=’ true. Otherwise,
Matlab may remain in a busy state with no on-screen information, and Ctrl+C may be needed
to regain control.

Information struct

The second output argument, Info, is a struct with details of building the PDF report. It contains
the following fields:

• .latexRun – the total number of LaTeX compiler runs needed to resolve cross-references and
other dependencies;

• .figureHandle – a vector of figure window handles created during the report production
process, and not closed (i.e. still existing in the Matlab workspace); to keep figure windows
open, use the figure object option ’close=’ false. If all figure and userfigure objects
inside a report have ’close=’ true then Info.figureHandle will be empty.

• .tempDir – empty unless publish is called with ’cleanup=’ false; in that case, this is the
name of a temporary directory in which all files are saved necessary to build the output PDF
are saved.

• .tempFile – empty unless publish is called with ’cleanup=’ false; in that case, this is the
list of all files (saved in the temporary directory) necessary to build the output PDF.

Example

section
Start new section in report

Syntax

P.section(CAP,...)

449

PDF Reports (report Package and Objects): series

Input arguments

• P [struct] - Report object created by the report.new P446 function.

• CAP [char] - Section title.

Options

• ’numbered=’ [true | false] - (Inherited) Numbered section.

• ’separator=’ [char | empty] - (Not inherited) LATEX commands that will be inserted after
the table.

Generic options

See help on generic options P422 in report objects.

Description

Example

series
Add new data to graph or table

Syntax

P.series(Cap,X,...)

Input arguments

• P [struct] - Report object created by the report.new P446 function.

• Cap [char | cellstr | @auto] - Caption used as a default legend entry in a graph, or in the
leading column in a table; @auto means that the first comment from the input tseries object,
X, will be used for the title.

• X [tseries] - Input data that will be added to the current table or graph.

450

PDF Reports (report Package and Objects): series

Options for both table series and graph series

• ’marks=’ [cellstr | empty] - (Inheritable from parent objects) Marks that will be added to the
legend entries in graphs, or printed in a third column in tables, to distinguish the individual
columns of possibly multivariate input tseries objects.

• ’showMarks=’ [true | false] - (Inheritable from parent objects) Use the marks defined in
the ’marks=’ option to label the individual rows when input data is a multivariate tseries
object.

Options for table series

• ’autoData=’ [function_handle | cell | empty] - Function, or a cell array of functions, that
will be used to produce new columns in the input tseries object (i.e. new rows of ouput in
the report).

• ’condFormat=’ [struct | empty] - (Inheritable from parent objects) Structure with .test and
.format fields describing conditional formatting of individual table entries.

• ’decimal=’ [numeric | NaN] - (Inheritable from parent objects) Number of decimals that will
be displayed; if NaN the ’format=’ option is used instead.

• ’format=’ [char | ’%.2f’] - (Inheritable from parent objects) Numeric format string; see
help on the built-in sprintf function.

• ’footnote=’ [char | empty] - Footnote at the series text.

• ’highlight=’ [numeric | empty] - Periods for which the data entries will highlighted.

• ’inf=’ [char | ’\ensuremath{\infty}’] - (Inheritable from parent objects) LaTeX string
that will be used to typeset Inf entries.

• ’nan=’ [char | ’\ensuremath{\cdot}’] - (Inheritable from parent objects) LaTeX string that
will be used to typeset NaN entries.

• ’pureZero=’ [char | empty] - (Inheritable from parent objects) LaTeX string that will be
used to typeset pure zero entries; if empty the zeros will be printed using the current numeric
format.

• ’printedZero=’ [char | empty] - (Inheritable from parent objects) LaTeX string that will
be used to typeset the entries that would appear as zero under the current numeric format
used; if empty these numbers will be printed using the current numeric format.

• ’rowHighlight=’ [true | false] - Highlight the entire row, including the text, units and
marks at the beginnig; because of a bug in the LaTex package colortbl, this option cannot
be combined with the option ’highlight=’ in report/table P455 .

451

PDF Reports (report Package and Objects): series

• ’separator=’ [char | empty] - LaTeX commands that will be inserted immediately after the
end of the table row, i.e. appended to \, within a tabular mode.

• ’units=’ [char] - (Inheritable from parent objects) Description of input data units that will
be displayed in the second column of tables.

Options for graph series

• ’legendEntry=’ [char | cellstr | NaN | @auto] - Legend entries used instead of the series
caption and marks; @auto means the caption and marks will be used to construct legend
entries; NaN means the series will be exluded from legend.

• ’plotFunc=’ [@area | @bar | @barcon | @plot | @plotcmp | @plotpred | @stem] - (Inheritable
from parent objects) Plot function that will be used to create graphs.

• ’plotOptions=’ [cell | empty] - Options passed as the last input arguments to the plot
function.

• yAxis=’ [’left’ | *’right’] - Choose the LHS or RHS axis to plot this series; see also
comments on LHS-RHS plots in Description.

Generic options

See help on generic options P422 in report objects.

Description

Using the options ’nan=’, ’inf=’, ’pureZero=’ and ’printedZero=’

When specifying the LaTeX string for these options, bear in mind that the table entries are printed
in the math model. This means that whenever you wish to print a normal text, you need to use
an appropriate text formatting command allowed within a math mode. Most frequently, it would
be ’\textnormal{...}’.

Using the option ’plotFunc=’

When you set the option to ’plotpred’, the input data X (second input argument) must be a
multicolumn tseries object where the first column is the time series observations, and the second
and further columns are its Kalman filter predictions as returned by the filter function.

452

PDF Reports (report Package and Objects): series

Conditional formatting

The conditional format struct (or an array of structs) specified through the ’condFormat=’ option
must have two fields, .test and .format.

The .test field is a text string with a Matlab expression. The expression must evaluate to a scalar
true or false, and can refer to the following attributes associated with each entry in the data part
of the table:

• value - the numerical value of the entry,
• date - the date under which the entry appears,
• year - the year under which the entry appears,
• period - the period within the year (e.g. month or quarter) under which the entry appears,
• freq - the frequency of the date under which the entry appears,
• text - the text label on the left,
• mark - the text mark on the left used to describe the individual rows reported for multivariate
series,

• row - the row number within a multivariate series.
• rowvalues - a row vector of all values on the current row.

If the table is based on user-defined structure of columns (option ’colstruct=’ in table P455),
the following additional attributes are available

• colname - descriptor of the column (text in the headline).

You can combine a number of attribues within one test, using the logical operators, e.g.

’value > 0 && year > 2010’

The .format fields of the conditional format structure consist of LaTeX commands that will be use
to typeset the corresponding entry. The reference to the entry itself is through a question mark.
The entries are typeset in math mode; this for instance meanse that for bold or italic typface, you
must use the \mathbf{...} and \mathit{...} commands.

In addition to standard LaTeX commands, you can use the following IRIS-specific commands in
the format strings:

• \sprintf{FFFF} - to modify the way each numeric entry that passes the test is printed by the
sprintf function; FFFF is one of the standard sprintf formatting strings.

• \hide{?} - to hide the actual entry when it is supposed to be replaced with something else.

You can combine multiple tests and their correponding formats in one structure; they will be all
applied to each entry in the specified order.

453

PDF Reports (report Package and Objects): subheading

LHS-RHS plots

The LHS-RHS report graphs are still an experimental feature.

When the option ’yAxis=’ is used to plot on both the LHS and the RHS y-axis, the plot functions
are restricted to @plot, @bar, @area and @stem. Also, because of a bug in Matlab, always control
the color of the lines, bars and areas in all LHS-RHS graphs: use either the option ’plotOptions=’

in this command, or ’style=’ in the respective graph P436 command.

Example (Conditional format structure)

Typeset negative values in italic, and values in periods before 2010Q1 blue:

cf = struct();

cf(1).test = ’value < 0’;

cf(1).format = ’\mathit{?}’;

cf(2).test = ’date < qq(2010,1)’;

cf(2).format = ’\color{blue}’;

subheading
Enter subheading in table

Syntax

P.subheading(CAP,...)

Input arguments

• P [struct] - Report object created by the report.new P446 function.

• CAP [char] - Text displayed as a subheading on a separate line in the table.

Options

• ’justify=’ [’c’ | ’l’ | ’r’] - (Inheritable from parent objects) Horizontal alignment of the
subheading (centre, left, right).

454

PDF Reports (report Package and Objects): table

• ’separator=’ [char | empty] - (Not inheritable from parent objects) LaTeX commands that
will be inserted immediately after the end of the table row, i.e. appended to \, within a
tabular mode.

• ’stretch=’ [true | false] - (Inheritable from parent objects) Stretch the subheading text
also across the data part of the table; if not the text will be contained within the initial
descriptive columns.

• ’typeface=’ [char | ’\itshape\bfseries’] - (Not inheritable from parent objects) LaTeX
code specifying the typeface for the subheading; it must use the declarative forms (such as
\itshape) and not the command forms (such as \textit{...}).

Generic options

See help on generic options P422 in report objects.

Description

Example

table
Start new table

Syntax

P.table(Caption,...)

Input arguments

• P [report] - Report object created by the report.new P446 function.

• Caption [char | cellstr] - Title or a cell array with title and subtitle displayed at the top of
the table; see Description for splitting the title or subtitle into multiple lines.

455

PDF Reports (report Package and Objects): table

Options

• ’arrayStretch=’ [numeric | 1.15] - (Inheritable from parent objects) Stretch between lines
in the table (in pts).

• ’captionTypeface=’ [cell | ’\large\bfseries’] - LaTeX format commands for typesetting
the table caption and subcaption; you can use Inf for either to indicate the default format.

• ’colFootnote=’ [cell | empty] - Footnotes for individual dates in the headings of the columns,
or column names in user-defined tables; the option must be a cell array with date-footnote
pairs.

• ’colHighlight=’ [numeric | empty] - Dates for which the entire corresponding columns
will be highlighted; because of a bug in the LaTex package colortbl, this option cannot be
combined with the option ’rowHighlight=’ in report/series P450 .

• ’colStruct=’ [struct | empty] - User-defined structure of the table columns; use of this
option disables ’range=’.

• ’colWidth=’ [numeric | NaN] - (Inheritable from parent objects) Width, or a vector of widhts,
of the table columns in emunits; NaN means the width of the column will adjust automatically.

• ’headlineJust=’ [’c’ | ’l’ | ’r’] - Horizontal justification of the headline entries (individual
dates or user-defined text): centre, left, right.

• ’footnote=’ [char | empty] - Footnote at the table title; only shows if the title is non-empty.

• ’long=’ [true | false] - (Inheritable from parent objects) If true, the table may stretch over
more than one page.

• ’longFoot=’ [char | empty] - (Inheritable from parent objects) Works only with ’long=’=true:
Footnote that appears at the bottom of the table (if it is longer than one page) on each page
except the last one.

• ’longFootPosition=’ [’centre’ | ’left’ | ’right’] - (Inheritable from parent objects)
Works only with ’long=’ true: Horizontal alignment of the footnote in long tables.

• ’range=’ [numeric | empty] - (Inheritable from parent objects) Date range or vector of dates
that will appear as columns of the table.

• ’separator=’ [char | ’\medskip\par’] - (Inheritable from parent objects) LATEX commands
that will be inserted after the table.

• ’sideways=’ [true | false] - (Inheritable from parent objects) Print the table rotated by 90
degrees.

• ’tabcolsep=’ [NaN | numeric] - (Inheritable from parent objects) Space between columns in
the table, measured in em units; NaN means the LATEX default.

456

PDF Reports (report Package and Objects): table

• ’typeface=’ [char | empty] - LATEX code specifying the typeface for the table as a whole;
it must use the declarative forms (such as \itshape) and not the command forms (such as
\textit{...}).

• ’vline=’ [numeric | empty] - (Inheritable from parent objects) Vector of dates after which
a vertical line (divider) will be placed.

Date format options

See dat2str P280 for details on date format options.

• ’dateFormat=’ [char | cellstr | ’YYYYFP’] - Date format string, or array of format strings
(possibly different for each date).

• ’freqLetters=’ [char | ’YHQBMW’] - Six letters used to represent the six possible frequencies
of IRIS dates, in this order: yearly, half-yearly, quarterly, bi-monthly, monthly, and weekly
(such as the ’Q’ in ’2010Q1’).

• ’months=’ [cellstr | {’January’,...,’December’}] - Twelve strings representing the names
of the twelve months.

• ’standinMonth=’ [numeric | ’last’ | 1] - Month that will represent a lower-than-monthly-
frequency date if the month is part of the date format string.

Generic options

See help on generic options P422 in report objects.

Description

Tables are top-level report objects and cannot be nested within other report objects, except
align P423 . Table objects can have the following children:

• series P450 ;
• subheading P454 .

By default, the date row is printed as a leading row with dates formated using the option ’dateFormat=’.
Alternatively, you can specify this option as a cell array of two strings. In that case, the dates will
be printed in two rows. The first row will have a date string displayed and centred for every year,
and the first cell of the ’dateFormat=’ option will be used for formatting. The second row will
have a date displayed for every period (i.e. every column), and the second cell of the ’dateFormat=’
option will be used for formatting.

457

PDF Reports (report Package and Objects): tex

User-defined structure of the table columns

Use the option ’colStruct=’ to define your own table columns. This gives you more flexibility
than when using the ’range=’ option in defining the content of the table.

The option ’colStruct=’ must be a 1-by-N struct, where N is the number of columns you want in
the table, with the following fields:

• ’name=’ - specifies the descriptor of the column that will be displayed in the headline;

• ’func=’ - specifies a function that will be applied to the input series; if ’func=’ is empty, no
function will be applied. The function must evaluate to a tseries or a numeric scalar.

• ’date=’ - specifies the date at which a number will be taken from the series unless the function
’func=’ applied before resulted in a numeric scalar.

Titles and subtitles

The input argument Caption can be either a text string, or a 1-by-2 cell array of strings. In the
latter case, the first cell will be printed as a title, and the second cell will be printed as a subtitle.

To split the title or subtitle into multiple lines, use the following LaTeX commands wrapped in
curly brackets: {\\} or {\\[Xpt]}, where X is the width of an extra vertical space (in points) added
between the respective lines.

Example

Compare the headers of these two tables:

x = report.new();

x.table(’First table’, ...

’range’,qq(2010,1):qq(2012,4), ...

’dateformat’,’YYYYFP’);

% You can add series or subheadings here.

x.table(’Second table’, ...

’range,qq(2010,1):qq(2012,4), ...

’dateformat’,{’YYYY’,’FP’});

% You can add series or subheadings here.

x.publish(’myreport.pdf’);

458

PDF Reports (report Package and Objects): tex

tex
Include LATEX code or verbatim input in report

Syntax with input specified in comment block

P.tex(Cap,...)

%{

Write text or \LaTeX\ code as a block comment

right after the P.tex() command.

%}

Syntax with input specified as char argument

P.tex(Cap,Code,...)

Input arguments

• P [struct] - Report object created by the report.new P446 function.

• Cap [char] - Caption displayed at the top of the text.

• Code [char] - LATEX code or text input that will be included in the report.

Options

• ’centering=’ [true | false] - (Inheritable from parent objects) Centre the LATEX code or
text input on the page.

• ’footnote=’ [char | empty] - Footnote at the tex block title; only shows if the title is
non-empty.

• ’separator=’ [char | ’\medskip\par’] - (Inheritable from parent objects) LaTeX commands
that will be inserted after the text.

• ’verbatim=’ [true | false] - If true the text will be typeset verbatim in monospaced font;
if false the text will be treated as LATEX
code included in the report.

459

PDF Reports (report Package and Objects): userfigure

Generic options

See help on generic options P422 in report objects.

Description

Example

userfigure
Insert existing figure window

Syntax

P.userfigure(Caption,H,...)

Input arguments

• P [struct] - Report object created by the report.new P446 function.

• Caption [char | cellstr] - Title or a cell array with title and subtitle displayed at the top of
the figure; see Description for splitting the title or subtitle into multiple lines.

• H [numeric] - Handle to a graphics figure created by the user that will be captured and
inserted in the report.

Options

See help on report/figure P433 for options available.

Generic options

See help on generic options P422 in report objects.

460

PDF Reports (report Package and Objects): vline

Description

The function report/userfigure inserts an existing figure window (created by the user by standard
Matlab commands, and referenced by its handle, H) into a report:

• The figure and the graphs in it must be created before you call report/figure: any changes
or additions to the figure or its graphs made after you call the function will not show in the
report.

• The userfigure cannot have any children; in other words, you cannot call report/graph P436

after a call to report/userfigure.

Titles and subtitles

The input argument Caption can be either a text string, or a 1-by-2 cell array of strings. In the
latter case, the first cell will be printed as a title, and the second cell will be printed as a subtitle.

To split the title or subtitle into multiple lines, use the following LaTeX commands wrapped in
curly brackets: {\\} or {\\[Xpt]}, where X is the width of an extra vertical space (in points) added
between the respective lines.

Figure window and figure handle

The figure H is saved to a fig file and stored within the report object. At the time of publishing
the report, the figure is re-created again in a new separate window.

If the option ’close=’ is set to false this new figure window will remain open after the report
is published. The handle to this figure window will be included in the field .figureHandle of the
information struct Info returned by report/publish P447 .

Example

vline
Add vertical line to graph

Syntax

P.vline(Caption,Date,...)

461

PDF Reports (report Package and Objects): vline

Input arguments

• P [struct] - Report object created by the report.new P446 function.

• Caption [char] - Caption used to annotate the vertical line.

• Date [numeric] - Date at which the vertical line will be plotted.

Options

• ’hPosition=’ [’bottom’ | ’middle’ | ’top’] - (Inheritable from parent objects) Horizontal
position of the caption.

• ’vPosition=’ [’centre’ | ’left’ | ’right’] - (Inheritable from parent objects) Vertical
position of the caption relative to the line.

• ’timePosition=’ [’after’ | ’before’ | ’middle’] - Placement of the vertical line on the
time axis: in the middle of the specified period, immediately before it (between the specified
period and the previous one), or immediately after it (between the specified period and the
next one).

Generic options

See help on generic options P422 in report objects.

Description

Example

462

Quick Database Plots: dbplot

22 Quick Database Plots

Quick database plot functions

• dbplot P405 - Plot from database.

Getting on-line help on quick database plot functions

help dbase/dbplot

dbplot
Plot from database

Syntax

[FF,AA,PDb] = dbplot(D,List,Range,...)

[FF,AA,PDb] = dbplot(D,Range,List,...)

[FF,AA,PDb] = dbplot(D,List,...)

[FF,AA,PDb] = dbplot(D,Range,...)

[FF,AA,PDb] = dbplot(D,...)

Input arguments

• D [struct] - Database with input data.

• List [cellstr | rexp] - List of expressions (or labelled expressions) that will be evaluated and
plotted in separate graphs; if not specified, all time series name found in the input database
D will be plotted. Alternatively, List can be a regular expression (rexp object), which will be
matched against all time series names in the input database.

• Range [numeric] - Date range; if not specified, the function dbrange P409 will be used to
determined the plotted range (same for all graphs).

Output arguments

• FF [numeric] - Handles to figures created by qplot.

• AA [cell] - Handles to axes created by qplot.

463

Quick Database Plots: dbplot

• PDB [struct] - Database with actually plotted series.

Options

• ’addClick=’ [true | false] - Make axes expand in a new graphics figure upon mouse click.

• ’caption=’ [cellstr | @comment | *empty*] - Strings that will be used for titles in the graphs
that have no title in the q-file.

• ’clear=’ [numeric | empty] - Serial numbers of graphs (axes objects) that will not be
displayed.

• ’dbSave=’ [cellstr | empty] - Options passed to dbsave when ’saveAs=’ is used.

• ’deviationsFrom=’ [numeric | empty] - Each expression in List that starts with a @ or #

(see Description) will be reported in deviations from this specified date.

• ’deviationsTimes=’ [numeric | empty] - Used only if ’deviationsFrom=’ is non-empty; each
expression in List that starts with a @ or # (see Description) will be reported in deviations
multiplied by this number.

• ’drawNow=’ [true | false] - Call Matlab drawnow function upon completion of all figures.

• ’grid=’ [true | false] - Add grid lines to all graphs.

• ’highlight=’ [numeric | cell | empty] - Date range or ranges that will be highlighted.

• ’interpreter=’ [’latex’ | ‘none’] - Interpreter used in graph titles.

• ’mark=’ [cellstr | empty] - Marks that will be added to each legend entry to distinguish
individual columns of multivariated tseries objects plotted.

• ’maxPerFigure=’ [numeric | 36] - Maximum number of graphs in one figure window; if the
actual graph count exceeds maxPerFigure, the option ‘subplot=’ is adjusted automatically,
and new figure windows are opened as needed.

• ’overflow=’ [true | false] - Open automatically a new figure window if the number of
subplots exceeds the available total; ’overflow’ = false means an error will occur instead.

• ’plotFunc=’ [@bar | @hist | *@plot* | @plotcmp | @plotpred | @stem | cell] - Plot function
used to create the graphs; use a cell array, {plotFunc,...} to specify extra input arguments
that will be passed into the plotting function.

• ’prefix=’ [char | ’P%g_’] - Prefix (a sprintf format string) that will be used to precede
the name of each entry in the PDb database.

• ’round=’ [numeric | Inf] - Round the input data to this number of decimals before plotting.

464

Quick Database Plots: dbplot

• ’saveAs=’ [char | empty] - File name under which the plotted data will be saved either in a
CSV data file or a PS graphics file; you can use the ’dbsave=’ option to control the options
used when saving CSV.

• ’style=’ [struct | empty] - Style structure that will be applied to all figures and their
children created by the qplot function.

• ’subplot=’ [‘auto’ | numeric] - Default subplot division of figures, can be modified in the
q-file.

• ’sstate=’ [struct | model | empty] - Database or model object from which the steady-state
values referenced to in the quick-report file will be taken.

• ’style=’ [struct | empty] - Style structure that will be applied to all created figures upon
completion.

• ’transform=’ [function_handle | empty] - Function that will be used to trans

• ’tight=’ [true | false] - Make the y-axis in each graph tight.

• ’vLine=’ [numeric | empty] - Dates at which vertical lines will be plotted.

• ’zeroLine=’ [true | false] - Add a horizontal zero line to graphs whose y-axis includes zero.

Description

The function dbplot opens a new figure window (as many as needed to accommodate all graphs
given the option ’subplot=’), and creates a graph for each entry in the cell array List.

List can contain the names of the database time series, expression referring to the database fields
evaluating to time series. You can also add labels (that will be displayed as graph titles) enclosed
in double quotes and preceding the expressions. At the beginning of the expression, you can use
one of the following marks:

• ˆ (a hat symbol) means the function specified in the option ’transform=’ will not be applied
to that expression;

• @ (an at symbol) in combination with the option ’deviationFrom=’ means that the deviations
will reported in multiplicative form (i.e. the actual value divided by the base period value).

• # (a hash symbol) in combination with the option ’deviationFrom=’ means that the devia-
tions will reported in additive form (i.e. the actual value minus the base period value).

465

Quick Database Plots: dbplot

Example

The following command will plot the time series x and y as deviations from 1 multiplied by 100 (see
the option ’transform=’), and the time series z as it is (because of the ˆ symbol at the beginning).
The first series will be labeled simply ’x’, while the last two series will be labeled ’Series y’ and
’Series z’, respectively.

dbplot(d,qq(2010,1):qq(2015,4), ...

{ ’x’, ’"Series y" y’, ’^"Series z"’ }, ...

’transform=’,@(x) 100*(x-1));

Example

The following command will plot the time series x and y as deviations from year 2000; x will be
computed as additive deviations (i.e. the base period value will be subtracted from its observations)
whereas y will be computed as a multiplicative deviations (i.e. the observations will be divided by
the base period value). The last time series z will not be transforme.d

dbplot(d,yy(2000):yy(2010), ...

{ ’# x’, ’@ y’, ’z’ }, ...

’deviationsFrom=’,yy(2000));

Example

The following command will plot all time series found in the database that start with ’a’.

dbplot(d,rexp(’^a.*’));

466

Graphics Functions (grfun Package): bottomlegend

23 Graphics Functions (grfun Package)

Graphics functions

• bottomlegend P467 - Horizontal graph legend displayed at the bottom of the figure window.
• ftitle P468 - Add title to figure window.
• highlight P468 - Highlight specified range or date range in a graph.
• hline P469 - Add horizontal line with text caption at the specified position.
• maxfigure P470 - Maximize figure window.
• movetobkg P471 - Move graphics objects to the background.
• movetosubplot P472 - Move an existing axes object or legend to specified subplot position.
• plotcircle P472 - Draw a circle or disc.
• plotpp P476 - Plot prior and/or posterior distributions and/or posterior mode.
• plotmat P473 - Visualise 2D matrix.
• plotneigh P474 - Plot local behaviour of objective function after estimation.
• vline P478 - Add vertical line with text caption at the specified position.
• zeroline P479 - Add zero line if Y-axis limits include zero.

Getting on-line help on graphics functions

help grfun

help grfun/function_name

bottomlegend
Horizontal graph legend displayed at the bottom of the figure window

Syntax

Le = grfun.bottomlegend(Entry,Entry,...)

Input arguments

• Entry [char | cellstr] - Legend entries; same as in the standard legend function.

Output arguments

• AX [numeric] - Handle to the legend axes object created.

467

Graphics Functions (grfun Package): highlight

Description

Example

ftitle
Add title to figure window

Syntax

Aa = grfun.ftitle(Titles,...)

Aa = grfun.ftitle(FF,Titles,...)

Input arguments

• FF [numeric | struct] - Handle to a figure window or windows; or a struct that includes a
field name figure.

• Titles [cellstr | char] - Text string to be centred, or cell array of strings to be placed on the
LHS, centred, and on the RHS of the figure.

Output arguments

• Aa [numeric] - Handle or handles to annotation objects.

Options

• ’location=’ [’north’ | ’west’ | ’east’ | ’south’] - Location of the figure title: top, left
edge sideways, right edge sideways, bottom.

Description

Example

highlight
Highlight specified range or date range in a graph

468

Graphics Functions (grfun Package): hline

Syntax

[Pt,Cp] = highlight(Range,...)

[Pt,Cp] = highlight(Ax,Range,...)

Input arguments

• Range [numeric] - X-axis range or date range that will be highlighted.

• Ax [numeric] - Handle(s) to axes object(s) in which the highlight will be made.

Output arguments

• Pt [numeric] - Handle to the highlighted area (patch object).

• Cp [numeric] - Handle to the caption (text object).

Options

• ’caption=’ [char] - Annotate the highlighted area with a text string.

• ’color=’ [numeric | 0.8] - An RGB color code, a Matlab color name, or a scalar shade of
gray.

• ’excludeFromLegend=’ [true | false] - Exclude the highlighted area from legend.

• ’hPosition=’ [‘center’ | ‘left’ | ‘right’] - Horizontal position of the caption.

• ’vPosition=’ [‘bottom’ | ‘middle’ | ‘top’ | numeric] - Vertical position of the caption.

Description

Example

hline
Add horizontal line with text caption at the specified position

469

Graphics Functions (grfun Package): maxfigure

Syntax

Ln = hline(Pos,...)

Ln = hline(Ax,Pos,...)

Input arguments

• ’Pos’ [numeric] - Vertical position or vector of positions at which the horizontal line(s) will
be drawn.

• Ax [numeric] - Handle to an axes object (graph) or to a figure window in which the the
horizontal line will be added; if not specified the line will be added to the current axes.

Output arguments

• Ln [numeric] - Handle to the line ploted (line object).

Options

• ’excludeFromLegend=’ [true | false] - Exclude the line from legend.

Any options valid for the standard plot function.

Description

Example

maxfigure
Maximize figure window

Syntax

Fig = maxfigure(H,...)

Fig = maxfigure(...)

470

Graphics Functions (grfun Package): movetobkg

Input arguments

• H [handle] - Handle to existing figure window that will be maximized; if omitted, a new
maximized figure window will be created.

Output arguments

• Fig [numeric] - Handle to the figure created.

Options

See help on standar figure for the options available.

Description

The function maxfigure uses get(0,’screenSize’) to determine the size of the screen, and sets
the figure property ’outerPosition’ accordingly.

Example

movetobkg
Move graphics objects to the background

Syntax

grfun.movetobkg(Parent,ToBkg)

Input arguments

• Parent [numeric] - Graphics handle to a parent object.

• ToBkg [numeric] - Graphics handle to children that will be moved to the background.

471

Graphics Functions (grfun Package): plotcircle

Description

Example

movetosubplot
Move an existing axes object or legend to specified subplot position

Syntax

Ax = grfun.movetosubplot(Ax,M,N,P)

Ax = grfun.movetosubplot(Ax,’bottom’)

Ax = grfun.movetosubplot(Ax,’top’)

Input arguments

• Ax [numeric] - Handle to an existing axes object or legend.

• M, N, P [numeric] - Specification of the new position; see help on standard subplot.

Output arguments

• AX [numeric] - Handle to the axes or legend moved to the new position.

Description

The syntax with ’bottom’ and ’top’ places the axes centered at, respectively, the bottom or top
of the figure window.

Example

plotcircle
Draw a circle or disc

472

Graphics Functions (grfun Package): plotmat

Syntax

H = grfun.plotcircle(X,Y,RAD,...)

Input arguments

• X [numeric] - X-axis location of the centre of the circle.

• Y [numeric] - Y-axis location of the centre of the circle.

• RAD [numeric] - Radius of the circle.

Output arguments

• H [numeric] - Handle to the line or the filled area.

Options

• ’fill=’ [true | false] - Switch between a circle (’fill=’ false) and a disc (’fill=’ true).

Any property name-value pair valid for line graphs.

Description

Example

plotmat
Visualise 2D matrix

Syntax

[HPos,HNeg,HNanInf,HMax] = grfun.plotmat(X,...)

[HPos,HNeg,HNanInf,HMax] = plotmat(X,...)

473

Graphics Functions (grfun Package): plotneigh

Input arguments

• X [numeric] - 2D matrix that will be visualised; ND matrices will be unfolded in 2nd
dimension before plotting.

Output arguments

• HPos [numeric] - Handles to discs displaying non-negative entries.

• HNeg [numeric] - Handles to discs displeying negative entries.

• HNanInf [numeric] - Handles to NaN or Inf marks.

• HMax [numeric] - Handles to circles displaying maximum value.

Options

• ’colNames=’ [char | cellstr | empty | ’auto’] - Names that will be given to the columns of
the matrix.

• ’rowNames=’ [char | cellstr | empty | ’auto’] - Names that will be give to the row of the
matrix.

• ’maxCircle=’ [true | false] - If true,display a circle denoting the maximum value around
each entry.

• ’nanInf=’ [char | X] - Appearance of NaN and Inf entries.

• ’showDiag=’ [true | false] - If false, hide the entries on the main diagonal by setting them
to NaN.

• ’scale=’ [numeric | ’auto’] - Maximum value (positive) relative to which all matrix
entries will be scaled; by default the scale is the maximum entry in the input matrix,
max(max(abs(X(isfinite(X)))).

Description

Example

plotneigh
Plot local behaviour of objective function after estimation

474

Graphics Functions (grfun Package): plotneigh

Syntax

H = grfun.plotneigh(D,...)

Input arguments

• D [struct] - Structure describing the local behaviour of the objective function returned by
the neighbourhood P124 function.

Output arguments

• H [struct] - Struct with handles to the graphics objects plotted by plotpp; the struct has
the following fields with vectors of handles: figure, axes, obj, est, lik, bounds.

Options

• ’caption=’ [empty | cellstr] - User-supplied graph titles; if empty, default captions will be
automatically created.

• ’model=’ [model | empty] - Model object used to create graph captions if the option
’caption=’ is ’descript’ or ’alias’.

• ’plotObj=’ [true | false] - Plot the local behaviour of the overall objective function; a cell
array can be specified to control graphics options.

• ’plotLik=’ [true | false | cell] - Plot the local behaviour of the data likelihood component;
a cell array can be specified to control graphics options.

• ’plotEst=’ [true | false | cell] - Mark the actual parameter estimate; a cell array can be
specified to control graphics options.

• ’plotBounds=’ [true | false | cell] - Draw the lower and/or upper bounds if they fall within
the graph range; a cell array can be specified to control graphics options.

• ’subplot=’ [’auto’ | numeric] - Subplot division of the figure when plotting the results.

• ’title=’ [{’interpreter=’,’none’} | cell] - Display graph titles, and specify graphics
options for the titles.

• ’linkAxes=’ [true | false] - Make the vertical axes identical for all graphs.

Description

The data log-likelihood curves are shifted up or down by an arbitrary constant to make them fit in
the graph; their curvature is preserved.

475

Graphics Functions (grfun Package): plotpp

Example

plotpp
Plot prior and/or posterior distributions and/or posterior mode

Syntax

[PrG,PoG,H] = grfun.plotpp(E,[],[],...)

[PrG,PoG,H] = grfun.plotpp(E,Est,[],...)

[PrG,PoG,H] = grfun.plotpp(E,[],Theta,...)

[PrG,PoG,H] = grfun.plotpp(E,[],Stats,...)

[PrG,PoG,H] = grfun.plotpp(E,Est,Theta,...)

[PrG,PoG,H] = grfun.plotpp(E,Est,Stats,...)

Input arguments

• E [struct] - Estimation input struct, see estimate P83 , with prior function handles from
the logdist P197 package.

• Est [struct | empty] - Output struct returned by the model/estimate P83 function; Est will
be used to plot the maximised posterior modes.

• Theta [numeric | empty] - Array with the chain of draws from the posterior simulator
arwm P189 .

• Stats [struct | empty] - Output struct returned by the posterior simulator statistics function
stats P194 .

Output arguments

• PrG [struct] - Struct with x- and y-axis coordinates to plot the prior distribution for each
parameter.

• PoG [struct] - Struct with x- and y-axis coordinates to plot the posterior distribution for
each parameter.

• H [struct] - Struct with handles to the graphics objects plotted by plotpp; the struct has
the following fields with vectors of handles: figure, axes, prior, poster, bounds, init, mode,
title.

476

Graphics Functions (grfun Package): plotpp

Options

• ’caption=’ [empty | cellstr] - User-supplied graph titles; if empty, default captions will be
automatically created.

• ’describe=’ [‘auto’ | true | false] - Include information on prior distributions, starting values,
and maximised posterior modes in the graph titles; ’auto’ means the descriptions will be
shown only if ’plotPrior=’ is true.

• ’ksdensity=’ [numeric | empty] - Number of points over which the density will be calculated;
if empty, default number will be used depending on the backend function available.

• ’plotInit=’ [true | false | cell] - Plot starting values (initial consition used in posterior
mode maximisation) as vertical stems.

• ’plotPrior=’ [true | false | cell] - Plot prior distributions.

• ’plotMode=’ [true | false | cell] - Plot maximised posterior modes as vertical stems; the
modes are taken from Est (and not from Stats or Theta).

• ’plotPoster=’ [true | false | cell] - Plot posterior distributions.

• ’plotBounds=’ [true | false | cell] - Plot lower and/or upper bounds as vertical lines; if
false, the bounds will be plotted only added if within the graph x-limits.

• ’sigma=’ [numeric | 3] - Number of std devs from the mean or the mode (whichever covers
a larger area) to the left and to right that will be plotted unless running out of bounds.

• ’tight=’ [true | false] - Make graph axes tight.

• ’title=’ [true | false | cell] - Display graph titles, and specify graphics options for the
titles.

• ’xLims=’ [struct | empty] - Control the x-limits of the prior and posterior graphs.

Description

The options that control what will be plotted in the graphs (i.e. ’plotInit=’, ’plotPrior=’,
’plotMode=’, ’plotPoster=’, ’plotBounds=’,’title=’) can be set to one of the following three
values:

• true,
• false,
• a cell array with sub-options to control the appearance of the respetive line; these will be
passed into the respective plotting function.

477

Graphics Functions (grfun Package): vline

Example

vline
Add vertical line with text caption at the specified position

Syntax

[Ln,Cp] = grfun.vline(Pos,...)

[Ln,Cp] = grfun.vline(Ax,Pos,...)

Input arguments

• Pos [numeric] - Horizontal position or vector of positions at which the vertical line(s) will
be drawn.

• Ax [numeric] - Handle to an axes object (graph) or to a figure window in which the the line
will be added; if not specified the line will be added to the current axes.

Output arguments

• Ln [numeric] - Handle to the vline(s) plotted (line objects).

• Cp [numeric] - Handle to the caption(s) created (text objects).

Options

• ’caption=’ [char] - Annotate vline with a text string.

• ’excludeFromLegend=’ [true | false] - Exclude vline from legend.

• ’hPosition=’ [’center’ | ’left’ | ’right’] - Horizontal position of the caption.

• ’vPosition=’ [’bottom’ | ’middle’ | ’top’ | numeric] - Vertical position of the caption.

• ’timePosition=’ [’after’ | ’before’ | ’middle’] - Placement of the vertical line on the
time axis: in the middle of the specified period, immediately before it (between the specified
period and the previous one), or immediately after it (between the specified period and the
next one).

478

Graphics Functions (grfun Package): zeroline

Description

Example

zeroline
Add zero line if Y-axis limits include zero

Syntax

Ln = zeroline(...)

Ln = zeroline(H,...)

Input arguments

• H [numeric] - Handle to an axes object (graph) or to a figure window in which the the line
will be added; if not specified the line will be added to the current axes.

Output arguments

• Ln [numeric] - Handle to the line ploted (line object).

Options

Any options valid for the standard plot function.

Description

Example

479

	Preface
	IRIS Solutions Team
	Contents
	Part I — IRIS Sessions
	Installing IRIS
	Starting, quitting, and configuring IRIS
	iriscleanup – Remove IRIS from Matlab and clean up
	irisfinish – Close the current IRIS session
	irisget – Query current IRIS config options
	irisman – Open IRIS Reference Manual PDF
	irisrequired – Throw error if the installed version of IRIS fails to comply with the required minimum
	irisreset – Reset IRIS configuration options to start-up values
	irisroot – Current IRIS root folder
	irisset – Change configurable IRIS options
	irisstartup – Start an IRIS session
	irisuserconfig – User configuration file called at the IRIS start-up
	irisversion – Current IRIS version

	Getting Online Help

	Part II — Model Development and Operation
	Model File Language
	!! – Steady-state version of an equation
	!all_but – Inverse list of log-linearised variables
	!autoexogenise – Definition of variable/shock pairs for use in autoexogenised simulation plans
	!dtrends – Block of deterministic trend equations
	!exogenous_variables – List of exogenous variables
	!export – Create a carry-around file to be saved on the disk
	!for...!do...!end – For loop for automated creation of model code
	!if...!elseif...!else...!end – Choose block of code based on logical condition
	!import – Include the content of another model file
	!links – Define dynamic links
	!log_variables – List of log-linearised variables
	!measurement_equations – Block of measurement equations
	!measurement_shocks – List of measurement shocks
	!measurement_variables – List of measurement variables
	!parameters – List of parameters
	!substitutions – Define text substitutions
	!switch...!case...!otherwise...!end – Switch among several cases based on expression
	!transition_equations – Block of transition equations
	!transition_shocks – List of transition shocks
	!transition_variables – List of transition variables
	!ttrend – Linear time trend in deterministic trend equations
	[...] – Pseudosubstitutions
	% – Line comments
	%{...%} – Block comments
	& – Reference to the steady-state level of a variable
	'...!!...' – Beginning of aliasing inside descriptions and labels
	<...> – Regular expression in log variable list
	=# – Mark an equation for exact non-linear simulation
	diff – First difference pseudofunction
	difflog – First log-difference pseudofunction
	dot – Gross rate of growth pseudofunction
	min – Define loss function for optimal policy
	movavg – Moving average pseudofunction
	movsum – Moving sum pseudofunction
	movsum – Moving product pseudofunction
	{...} – Lag or lead

	Models (model Objects)
	acf – Autocovariance and autocorrelation functions for model variables
	addparam – Add model parameters to a database (struct)
	alter – Expand or reduce number of alternative parameterisations
	assign – Assign parameters, steady states, std deviations or cross-correlations
	autocaption – Create captions for graphs of model variables or parameters
	autoexogenise – Get or set variable/shock pairs for use in autoexogenised simulation plans
	blazer – Reorder steady-state equations into block-recursive structure
	bn – Beveridge-Nelson trends
	chkmissing – Check for missing initial values in simulation database
	chksstate – Check if equations hold for currently assigned steady-state values
	comment – Get or set user comments in an IRIS object
	data4lhsmrhs – Prepare data array for running
	diffloglik – Approximate gradient and hessian of log-likelihood function
	diffsrf – Differentiate shock response functions w.r.t. specified parameters
	eig – Eigenvalues of the transition matrix
	emptydb – Create model-specific database with empty tseries for all variables, shocks and parameters
	estimate – Estimate model parameters by optimising selected objective function
	evalsystempriors – Evaluate minus log of system prior density
	expand – Compute forward expansion of model solution for anticipated shocks
	export – Save export files to disk
	fevd – Forecast error variance decomposition for model variables
	ffrf – Filter frequency response function of transition variables to measurement variables
	filter – Kalman smoother and estimator of out-of-likelihood parameters
	findeqtn – Find equations by the labels
	findname – Find names of variables, shocks, or parameters by their descriptors
	fisher – Approximate Fisher information matrix in frequency domain
	fmse – Forecast mean square error matrices
	get – Query model object properties
	horzcat – Combine two compatible model objects in one object with multiple parameterisations
	icrf – Initial-condition response functions
	ifrf – Frequency response function to shocks
	iscompatible – True if two models can occur together on the LHS and RHS in an assignment
	islinear – True for models declared as linear
	islocked – Get lock status of dynamic links or sstate update equations
	islog – True for log-linearised variables
	ismissing – True if some initical conditions are missing from input database
	isname – True for valid names of variables, parameters, or shocks in model object
	isnan – Check for NaNs in model object
	issolved – True if model solution exists
	isstationary – True if model or specified combination of variables is stationary
	jforecast – Forecast with judgmental adjustments (conditional forecasts)
	length – Number of alternative parameterisations
	lhsmrhs – Evaluate the discrepancy between the LHS and RHS for each model equation and given data
	lock – Lock (disable) dynamic links or sstate update equations temporarily
	loglik – Evaluate minus the log-likelihood function in time or frequency domain
	lognormal – Characteristics of log-normal distributions returned from filter of forecast
	model – Create new model object based on model file
	neighbourhood – Evaluate the local behaviour of the objective function around the estimated parameter values
	omega – Get or set the covariance matrix of shocks
	refresh – Refresh dynamic links
	regress – Centred population regression for selected model variables
	reporting – Evaluate reporting equations from within model object
	resample – Resample from the model implied distribution
	reset – Reset specific values within model object
	rollback – Prepare database for a rollback run of Kalman filter
	set – Change modifiable model object property
	shockdb – Create model-specific database with random shocks
	shockplot – Short-cut for running and plotting plain shock simulation
	simulate – Simulate model
	single – Convert solution matrices to single precision
	solve – Calculate first-order accurate solution of the model
	srf – Shock response functions, first-order solution only
	sspace – State-space matrices describing the model solution
	sstate – Compute steady state or balance-growth path of the model
	sstatedb – Create model-specific steady-state or balanced-growth-path database
	sstatefile – Create a steady-state file based on the model object's steady-state equations
	stdscale – Rescale all std deviations by the same factor
	subsasgn – Subscripted assignment for model and systemfit objects
	subsref – Subscripted reference for model and systemfit objects
	system – System matrices for unsolved model
	templatedb – Create model-specific template database
	unlock – Unlock (enable) locked dynamic links or sstate update equations
	userdata – Get or set user data in an IRIS object
	VAR – Population VAR for selected model variables
	vma – Vector moving average representation of the model
	xsf – Power spectrum and spectral density of model variables
	zerodb – Create model-specific zero-deviation database

	Reporting Equations (rpteq Objects)
	reporting – Evaluate reporting equations from within model object
	rpteq – New reporting equations (rpteq) object
	run – Evaluate reporting equations (rpteq) object

	Model Simulation Plans (plan Objects)
	autoexogenise – Exogenise variables and automatically endogenise corresponding shocks
	condition – Condition forecast upon the specified variables at the specified dates
	detail – Display details of a simulation plan
	endogenise – Remove all endogenized, exogenized, autoexogenized and conditioned upon data points from simulation plan
	endogenise – Endogenise shocks or re-endogenise variables at the specified dates
	exogenise – Exogenise variables or re-exogenise shocks at the specified dates
	get – Query to plan object
	nnzcond – Number of conditioning data points
	nnzendog – Number of endogenised data points
	nnzexog – Number of exogenised data points
	plan – Create new empty simulation plan object
	subsref – Subscripted reference for plan objects
	swap – Swap endogeneity and exogeneity of variables and shocks

	Grouping and Aggregation of Contributions (grouping Objects)
	addgroup – Add measurement variable group or shock group to grouping object
	detail – Details of a grouping object
	eval – Evaluate contributions in input database S using grouping object G
	grouping – Create new empty grouping object
	isempty – True for empty grouping object

	System Priors (systempriors Objects)
	detail – Display details of system priors object
	isempty – True if system priors object is empty
	length – Number or priors in system priors object
	prior – Add new prior to system priors object
	systempriors – Create new empty system priors object

	Posterior Simulator (poster Objects)
	arwm – Adaptive random-walk Metropolis posterior simulator
	eval – Evaluate posterior density at specified points
	poster – Create new empty posterior simulation (poster) object
	regen – Regeneration time MCMC Metropolis posterior simulator
	stats – Evaluate selected statistics of ARWM chain

	Probability Distributions (logdist Package)
	beta – Create function proportional to log of beta distribution
	gamma – Create function proportional to log of gamma distribution
	gamma – Create function proportional to log of Chi-Squared distribution
	invgamma – Create function proportional to log of inv-gamma distribution
	lognormal – Create function proportional to log of log-normal distribution
	normal – Create function proportional to log of Normal distribution
	t – Create function proportional to log of Student T distribution
	uniform – Create function proportional to log of uniform distribution

	Matrices with Named Rows and Columns (namedmat Objects)
	colnames – Names of columns in namedmat object
	namedmat – Create a new matrix with named rows and columns
	rownames – Names of rows in namedmat object
	select – Select submatrix by referring to row names and column names
	transpose – Transpose each page of matrix with names rows and columns

	Part III — Multivariate Time Series Analysis
	Vector Autoregressions (VAR Objects)
	acf – Autocovariance and autocorrelation functions for VAR variables
	addparam – Add VAR parameters to a database (struct)
	alter – Expand or reduce the number of alternative parameterisations within a VAR object
	assign – Manually assign system matrices to VAR object
	backward – Backward VAR process
	comment – Get or set user comments in an IRIS object
	companion – Matrices of first-order companion VAR
	demean – Remove constant and the effect of exogenous inputs from VAR object
	eig – Eigenvalues of a VAR process
	estimate – Estimate a reduced-form VAR or BVAR
	ferf – Forecast error response function
	filter – Filter data using a VAR model
	fmse – Forecast mean square error matrices
	forecast – Unconditional or conditional VAR forecasts
	fprintf – Write VAR model as formatted model code to text file
	get – Query VAR object properties
	group – Retrieve VAR object from panel VAR for specified group of data
	horzcat – Combine two compatible VAR objects in one object with multiple parameterisations
	infocrit – Populate information criteria for a parameterised VAR
	instrument – Define forecast conditioning instruments in VAR models
	integrate – Integrate VAR process and data associated with it
	iscompatible – True if two VAR objects can occur together on the LHS and RHS in an assignment
	isexplosive – True if any eigenvalue is outside unit circle
	ispanel – True for panel VAR objects
	isstationary – True if all eigenvalues are within unit circle
	length – Number of alternative parameterisations in VAR object
	lrtest – Likelihood ratio test for VAR models
	mean – Mean of VAR process
	nfitted – Number of data points fitted in VAR estimation
	portest – Portmanteau test for autocorrelation in VAR residuals
	resample – Resample from a VAR object
	rngcmp – True if two VAR objects have been estimated using the same dates
	schur – Compute and store triangular representation of VAR
	simulate – Simulate VAR model
	sprintf – Print VAR model as formatted model code
	sspace – Quasi-triangular state-space representation of VAR
	subsasgn – Subscripted assignment for VAR objects
	subsref – Subscripted reference for VAR objects
	userdata – Get or set user data in an IRIS object
	VAR – Create new empty reduced-form VAR object
	vma – Matrices describing the VMA representation of a VAR process
	xasymptote – Set or get asymptotic assumptions for exogenous inputs
	xsf – Power spectrum and spectral density functions for VAR variables

	Structural Vector Autoregressions (SVAR Objects)
	fevd – Forecast error variance decomposition for SVAR variables
	get – Query SVAR object properties
	sort – Sort SVAR parameterisations by squared distance of shock reponses to median
	srf – Shock (impulse) response function
	SVAR – Convert reduced-form VAR to structural VAR

	Bayesian VAR Priors (BVAR Package)
	covmat – Covariance matrix prior dummy observations for BVARs
	litterman – Litterman's prior dummy observations for BVARs
	sumofcoeff – Doan et al sum-of-coefficient prior dummy observations for BVARs
	uncmean – Unconditional-mean dummy (or Sims' initial dummy) observations for BVARs
	user – User-supplied prior dummy observations for BVARs

	Factor-Augmented Vector Autoregressions (FAVAR Objects)
	comment – Get or set user comments in an IRIS object
	estimate – Estimate FAVAR using static principal components
	FAVAR – Create new empty FAVAR object
	filter – Re-estimate the factors by Kalman filtering the data taking FAVAR coefficients as given
	forecast – Forecast FAVAR factors and observables
	get – Query model object properties
	isempty – True if VAR based object is empty
	userdata – Get or set user data in an IRIS object
	VAR – Return a VAR object describing the factor dynamics

	Part IV — Time Series and Database Management
	Dates and Date Ranges
	bb – IRIS serial date number for bimonthly date
	bbtoday – IRIS serial date number for current bi-month
	clp2dat – Convert text in system clipboard to dates
	dat2char – Convert dates to character array
	dat2charlist – Convert dates to a comma-separated list
	dat2clp – Convert dates to text and paste to system clipboard
	dat2dec – Convert dates to decimal grid
	dat2str – Convert IRIS dates to cell array of strings
	dat2ttrend – Construct linear time trend from date range
	dat2ypf – Convert IRIS serial date number to year, period and frequency
	datbom – Beginning of month for the specified daily date
	datboq – Beginning of quarter for the specified daily date
	datboy – Beginning of year for the specified daily date
	datcmp – Compare two IRIS serial date numbers
	datdiff – Number of periods between two dates with check for date frequency
	dateom – End of month for the specified daily date
	dateoq – End of quarter for the specified daily date
	dateoy – End of year for the specified daily date
	datrange – Numerically safe way to create a date range
	datxtick – Change ticks, labels and/or date frequency on x-axis in existing tseries graphs
	daysinyear – Number of days in year
	dd – Matlab serial date numbers that can be used to construct daily tseries objects
	ddtoday – Matlab serial date number for today's date
	dec2dat – Convert decimal representation of date to IRIS serial date number
	hh – IRIS serial date number for half-yearly date
	hhtoday – IRIS serial date number for current half-year
	mm – IRIS serial date number for monthly date
	mmtoday – IRIS serial date number for current month
	qq – IRIS serial date number for quarterly date
	qqtoday – IRIS serial date number for current quarter
	rngcmp – Compare two IRIS date ranges
	str2dat – Convert strings to IRIS serial date numbers
	textinp2dat – Convert text input to IRIS serial date numbers
	weeksinyear – Number of weeks in year
	ww – IRIS serial date number for weekly date
	ww2day – Convert weekly IRIS serial date number to Matlab serial date number
	wwtoday – IRIS serial date number for current week
	yy – IRIS serial date number for yearly date
	yytoday – IRIS serial date number for current year

	Time Series (tseries Objects)
	acf – Sample autocovariance and autocorrelation functions
	apct – Annualised percent rate of change
	area – Area graph for tseries objects
	arf – Run autoregressive function on time series
	arma – Apply ARMA model to input series
	band – Line-and-band graph for tseries objects
	bar – Bar graph for tseries objects
	barcon – Contribution bar graph for tseries objects
	bpass – Band-pass filter
	bsxfunc – Implement bsxfun for tseries class
	bwf – Swap output arguments of the Butterworth filter with tunes
	bwf – Butterworth filter with tunes
	chowlin – Chow-Lin distribution of low-frequency observations over higher-frequency periods
	convert – Convert tseries object to a different frequency
	cumsumk – Cumulative sum with a k-period leap
	destdise – Destandardise tseries object by applying specified standard deviation and mean to it
	detrend – Remove a linear time trend
	diff – First difference
	double – Return tseries observations as double-precision numeric array
	doubledata – Convert tseries observations to double precision
	empty – Empty time series preserving the size in 2nd and higher dimensions
	enddate – Date of the last available observation in a tseries object
	errorbar – Line plot with error bars
	ews – Exponential smoothing
	fft – Discrete Fourier transform of tseries object
	flipud – Flip time series data up to down
	freq – Date frequency of tseries object
	get – Query tseries object property
	hpdi – Highest probability density interval
	hpf – Hodrick-Prescott filter with tunes (aka LRX filter)
	hpf2 – Swap output arguments of the Hodrick-Prescott filter with tunes
	interp – Interpolate missing observations
	isequal – [Not a public function] Compare two tseries objects
	length – Length of tseries object
	llf – Local level filter (aka random walk plus white noise) with tunes
	llf2 – Swap output arguments of the local linear trend filter with tunes
	moving – Apply function to moving window of observations
	ndims – Number of dimensions in tseries object data
	normalise – Normalise (or rebase) data to particular date
	pct – Percent rate of change
	permute – Permute dimensions of a tseries object
	plot – Line graph for tseries objects
	plotcmp – Comparison graph for two time series
	plotpred – Plot Kalman filter predictions
	plotyy – Line plot function with LHS and RHS axes for time series
	redate – Change time dimension of time series
	regress – Ordinary or weighted least-square regression
	repmat – Repeat copies of time series data
	reshape – Reshape size of time series in 2nd and higher dimensions
	resize – Clip tseries object down to a specified date range
	rmse – Compute RMSE for given observations and predictions
	round – Round tseries values to specified number of decimals
	scatter – Scatter graph for tseries objects
	single – Return tseries observations as single-precision numeric array
	singledata – Convert tseries observations to single precision
	size – Size of tseries object data
	sort – Sort tseries columns by specified criterion
	specrange – Time series specific range
	spy – Visualise tseries observations that pass a test
	startdate – Date of the first available observation in a tseries object
	stdise – Standardise tseries data by subtracting mean and dividing by std deviation
	stem – Plot tseries as discrete sequence data
	subsasgn – Subscripted assignment for tseries objects
	subsref – Subscripted reference function for tseries objects
	trend – Estimate a time trend
	tseries – Create new time series (tseries) object
	windex – Simple weighted or Divisia index
	wmean – Weighted average of time series observations
	x12 – Access to X13-ARIMA-SEATS seasonal adjustment program
	yearly – Display tseries object one calendar year per row

	Time-Recursive Expressions (trec Objects)
	minus – Create time-recursive lag of tseries object
	plus – Create time-recursive lead of tseries object
	trec – Create new recursive time subscript object

	Basic Database Management
	array2db – Convert numeric array to database
	db2array – Convert tseries database entries to numeric array
	db2tseries – Combine tseries database entries in one multivariate tseries object
	dbbatch – Run a batch job to create new database fields
	dbclip – Clip all tseries entries in database down to specified date range
	dbcol – Retrieve the specified column or columns from database entries
	dbcomment – Create model-based comments for database tseries entries
	dbfun – Apply function to database fields
	dbload – Create database by loading CSV file
	dbmerge – Merge two or more databases
	dbminuscontrol – Create simulation-minus-control database
	dbnames – List of database entries filtered by name and/or class
	dboverlay – Combine tseries observations from two or more databases
	dbpage – Retrieve the specified page or pages from database entries
	dbplot – Plot from database
	dbprintuserdata – Print names of database tseries along with specified fields of their userdata
	dbrange – Find a range that encompasses the ranges of the listed tseries objects
	dbredate – Redate all tseries objects in a database
	dbsave – Save database as CSV file
	dbsearchuserdata – Search database to find tseries by matching the content of their userdata fields
	dbsplit – Split database into mutliple databases
	dbuserdatalov – List of values found in a specified user data field in tseries objects
	minus – Remove entries from a database
	mtimes – Keep only the database entries that are on the list
	plus – Merge entries from two databases together
	xls2csv – Convert XLS file to CSV file

	Part V — Reporting and Publishing
	PDF Reports (report Package and Objects)
	align – Vertically align the following K objects
	array – Insert array with user data
	band – Add new data with lower and upper bounds to graph or table
	copy – Create a copy of a report object
	disp – Display the structure of report object
	disp – Display the structure of report object
	empty – Empty report object
	fanchart – Add fanchart to graph
	figure – Start new figure
	findall – Find all objects of a given type within report object
	graph – Add graph to figure
	highlight – Highlight range in graph
	include – Include text or LaTeX input file in the report
	matrix – Insert matrix or numeric array
	merge – Merge the content of two or more report objects
	modelfile – Write formatted model file
	new – Create new empty report object
	pagebreak – Force page break
	publish – Compile PDF from report object
	section – Start new section in report
	series – Add new data to graph or table
	subheading – Enter subheading in table
	table – Start new table
	tex – Include LaTeX code or verbatim input in report
	userfigure – Insert existing figure window
	vline – Add vertical line to graph

	Quick Database Plots
	dbplot – Plot from database

	Graphics Functions (grfun Package)
	bottomlegend – Horizontal graph legend displayed at the bottom of the figure window
	ftitle – Add title to figure window
	highlight – Highlight specified range or date range in a graph
	hline – Add horizontal line with text caption at the specified position
	maxfigure – Maximize figure window
	movetobkg – Move graphics objects to the background
	movetosubplot – Move an existing axes object or legend to specified subplot position
	plotcircle – Draw a circle or disc
	plotmat – Visualise 2D matrix
	plotneigh – Plot local behaviour of objective function after estimation
	plotpp – Plot prior and/or posterior distributions and/or posterior mode
	vline – Add vertical line with text caption at the specified position
	zeroline – Add zero line if Y-axis limits include zero

