
Explaining Prolog Based Expert Systems Using a Layered
Meta-interpreter

Leon Sterling and L. Umit Yalginalp*
Department of Computer Engineering and Science

Case Western Reserve University
Cleveland, OHIO 44106

Abstract

Abs t rac t

This paper presents an improved method of ex­
plaining Prolog-based expert systems. The key
idea is to make explicit failures during the com­
putation. This allows the integrated explana­
tion in a single interpreter of both successful
and failed computations. It also allows rules
containing cuts to be effectively explained. Fur­
thermore, the explanation system is interactive,
and allows full explanation of both successful
and failed partial computations. We discuss in
some detail a two-layer meta-interpreter which
is at the heart of the system.

1 Constructs for Explanation
In recent years, several systems have been developed for
explaining the execution of Prolog. Applications of these
systems have ranged from teaching Prolog [Brayshaw
and Eisenstadt, 1988], debugging Prolog [Pereira, 1986,
Shapiro, 1983], to presenting the results of Prolog-
based expert systems, [Clark and McCabe, 1982, Ham­
mond, 1984, Niblett, 1984, Sterling and Lalee, 1986,
Walker et a/., 1987, Yalqinalp and Sterling, 1988]. In each
case, extra mechanisms were added to make explicit the
relevant features of Prolog's backward chaining behav­
ior.

For example, the following constructs are needed to
give MYCIN-like explanations of expert systems writ­
ten as collections of simple Prolog clauses. Proof trees
represent successful branches of the search tree which is
implicitly generated and traversed during a Prolog com­
putation. After completion of the computation, a proof
tree is presented in a suitable format to answer ques­
tions about how a solution is computed. History lists
represent the current branch of the search tree being
traversed and are implemented as a stack of successive
goals investigated up to the current goal. Whenever the
user is consulted for information, for example to find a
missing fact, which might be used to prove or refute the
particular goal in question, she is allowed to inquire why

*This research was supported under NSF Grant No.
1R187-03911, and Equipment Grant No. DMC 8703210.

she is being consulted. More detailed information about
these constructs can be found in [Sterling and Shapiro,
1986].

Failure trees represent failure branches of the search
tree that have been traversed during the computation. A
variety of techniques have been used to selectively collect
such failure branches, all of which are based on separate
interpreters for successes and failures [Bruffaerts and
Henin, 1988, Hammond, 1984, Sterling and Lalee, 1986,
Walker et a/., 1987]. Failure trees are used to answer
whynot questions.

These constructs can be added directly to each clause
in the Prolog program [Clark and McCabe, 1982].
A better approach is to write an enhanced ineta-
interpreter with the appropriate functionality. Most of
the work cited above uses the standard four clause meta-
interpreter at the clause reduction level [Sterling and
Shapiro, 1986].

Two classes of explanations based on these constructs
can be differentiated. How and whynot explanations are
provided after the computation. Why explanations, on
the other hand, are given during the computation.

This paper addresses two major limitations with cur­
rent explanation systems based on the variants of the
meta-interpreter at the clause reduction level. The first
is their inability to explain adequately extra-logical Pro-
log predicates, such as negation and cut. We don't ac­
cept the solution adopted in [Bruffaerts and Henin, 1988,
Sterling and Lalee, 1986] for explaining negation using
a totally separate program. Limitations arise from the
way the control flow is being modelled by the meta-
interpreter. The abstraction of the computation in the
systems above does not allow the failure mechanism of
Prolog to be properly represented and controlled during
this computation.

The second limitation arises from the difference be­
tween the view of the computation presented to the user
during the computation and that after the computation.
Specifically, when answering a why question, the user
only sees the sequence of rules/clauses currently being
investigated, but not completed or failed portions of the
computation in different parts of the search tree. In other
words, the user is not presented with a global picture. In
contrast, how and whynot explanations present a com­
plete computation.

In this paper, we describe a two-layer meta-interpreter

66 Tools

with a different abstraction of the control flow than the
standard meta-interpreter. The new meta-interpreter al­
lows proper explanations of extra-logical predicates such
as the cut. Further, by introducing the concept of par­
tial proof trees, it treats explanations given both during
and after the computation uniformly, and faithfully to
Prolog's computation model.

2 A Two-Layer Meta-interpreter
A good explanation depends on a good representation of
the computation at an appropriate level of abstraction.
The major limitation of current explanations of Prolog-
based systems stems from handling failure too implicitly.
Failure in Prolog is composed of two different events.
First, a failure occurs when a particular goal fails to unify
with any of the existing clauses in the program. This fail­
ure causes backtracking to generate alternative solutions.
Second, if all backtracking efforts result in failure for all
clause definitions of a goal, Prolog answers "no".

The inability to unify, and the exhaustion of al­
ternatives for a goal are implicitly used in most re­
ported work, but not explicitly represented. The stan­
dard meta-interpreter can be augmented with a result
variable to make it fail-safe [Levi and Sardu, 1987,
Sterling and Lakhotia, 1988]. This makes fail ure infor­
mation available but changes the behaviour of Prolog.

Prolog's behaviour can be kept while maintaining ex­
plicit failures by building a meta-interpreter in two lay­
ers. We call the first layer of the interpreter the goal
layer, while the second layer is called the branch layer.
The goal layer uses the predicate solve_branch to gener­
ate each possible computation of the goal being solved.
The result of the computation, either yes or no, is re­
turned by the second argument of solve.branch. Note
that the solve_ branch layer is fail-safe. This result is then
filtered by the goal layer to recover Prolog's behaviour.
Its essence is captured in the predicate, solve.goal, de­
fined as follows.

solve_goal(Goal,Result) <—
sol ve_branch(Goal, Result),
filter_failure(Result).

solve_goal(Goal,no).

filter_failure(yes).
filter_failure(no) <— fail.

The branch layer is similar to the standard meta-
interpreter at the clause reduction level. The complete
code for the two-layer interpreter is given in Figure 1.
The scope of the interpreter is given by the clauses for
solve_branch. In particular, it covers conjunctive goals,
system goals, negated goals, single goals (namely rules),
conditionals, set predicates, such as findall and askable
goals.

Note that the two events involved in Prolog's failure
mechanism have been made explicit. Failure to unify is
indicated by a solve_branch clause, which returns a "no".
This occurs when none of the clauses in the database
are unifiable with the current goal. This is recognized
by using the negation of the built-in clause(Goal,Body)
in Prolog. Backtracking is initiated by the failure of

f i l te r_ fa i lure. This explicit representation of failure will
be used in extending the interpreter later.

This two-layer interpreter follows the computation
model of Prolog faithfully. Failure can be controlled and
used to represent the result of a computation. Further,
all computation is handled by a single interpreter. There
is no reason to wait for the result of computation for a
goal to detect failures, as in other systems [Bruffaerts
and Henin, 1988, Sterling and Lalee, 1986]. The com­
putation, as in Prolog, is performed only once, which
allows the interpreter to correctly handle programs with
side-effects.

The presence of two layers makes it straightforward to
handle negation-as-failure correctly, as follows:

solve_branch(not Goal,Result) <—
solve_goal(Goal,Result-Not), !, invert(Result_Not,Result).

invert(yes.no).
invert(no.yes).

We next demonstrate how the two layer approach facil­
itates the handling of cuts. A third result is used, namely
commit, which represents a special type of failure due to
commitment in the body of a clause. In the branch layer,
Prolog's clause ordering is exploited to achieve the de­
sired result.

solve_branch(!,yes).
solve_branch(!,commit) <— !.

Obtaining a commit result at a branch can affect the
program in two ways, depending on the type of the goal.

• For a series of conjunctive
goals, <— P1, P2,..., Pi, ..., Pn, a cut can be any of
these goals in the body. We retain the value of the
computation, namely commit, as a failure occuring
due to a commitment for the entire conjunction and
inform the parent goal. If the cut is the final goal,
Pn, then the result of the computation will be com-
mil by the solve.branch clause above. If this goal is
Pi and the result of the computation of P i+1,..., Pn
is "no", then the result of the computation in the
branch layer is commit. This is then handled in the
goal layer of the interpreter, as seen in Figure 1.

• For a single goal, a commitment at the branches
means an immediate failure as it is the parent goal.
That means a commit result for a branch of the sin­
gle goal actually indicates a no result in the goal
layer, and the goal should no longer investigate
other possibilities via different clause definitions in
the branch layer.

Handling cuts correctly is achieved by modifying fil­
­­­­failure and solve.goal Now, filter_failure acts as an­
other "port" for indicating overall failure upon com­
mitment by returning a ''no" result for a single goal.
Solve_goal is altered to make the interpreter actually
commit itself by placing a cut in the goal layer. This
prevents backtracking of the interpreter back to the
branches wliich generate alternative solutions. The mod­
ified goal layer is represented in Figure 1.

Sterling and Yalcinalp 67

% GOAL LAYER

Figure 1: The Layered Interpreter

68 Tools

To handle the effect of cuts on instant iat ing variables
correctly, a copy of the goal is needed. Since the com­
mi tment would instant iate the actual goal, the bindings
wi l l be propagated w i th in the tree. In order to be fai th­
ful to the execution process, the actual goal should be
uninstant iated upon fai lure. To have a uni form struc­
ture, the copy of the actual goal is used for creating the
branches and expl ici t unif icat ion w i th this goal happens
upon success.

Other control predicates can be handled in our frame-
work. For example, the extension for the if-then-else con­
struct , P —► Q\R, is immediate. The interpeter uses the
Result of the goal defining the condit ional part , if, to de­
fine and control the result of the branch defining the the
construct. It is shown in the fu l l interpreter in Figure 1.

3 Explanat ions Generated by the
Layered Meta- In terpre ter

An extra argument, Proof, is used for collecting proofs
in the branch layer of the interpreter. This is a standard
technique discussed in [Sterling and Shapiro, 1986] and
used in [BruiTaerts and Henin, 1988, Sterl ing and Lalee,
1986, Yalcinalp and Sterl ing, 1988], etc. The proofs, both
of successes and failures, arc t ransmit ted to the goal layer
at this layer's exit points.

The exit points of the goal layer are filter .failure, upon
success or fai lure due to commitment , and the second
clause of solve .goal upon u l t imate failure of the goal.
Since this interpreter does not know in advance whether
a goal wi l l u l t imate ly fai l or not, the proof is kept by the
goal layer when a "no" result occurs in the branch layer.
If there is no commi tment , the alternative solutions are
generated by imposing failure. Upon generating a suc­
cess, a "yes" result by the branch layer, all the previously
encountered failures are discarded since they are not rel­
evant. However a fai lure, which occurs by commitment
or u l t imate fai lure of all branches, enables the interpreter
to collect the proofs of all the failure brandies that are
previously stored. The method is shown below:

solve_goal(Goal,Result,Proof) <—
copy(Goal.Copy),
solve_branch(Copy, BResuIt, B Proof),
(BResult = commit —► !;true),
filter_failure(BRcsult, Result, Copy.Goal.BProof, Proof),

solve_goal(GoaI,no,fail(Goal,Failures)) <—
get_proof(Goal, Failures).

filter_failure(yes,yes, Copy, Goal, Proof, Proof) <—
get_proof(Goal, Failures),
Goal = Copy.

filter_failure(no,_,Copy,_,BProof,_) <—
store(Copy,BProof), !, fail.

fi lter_failure(commit,commit, Copy, Goal, Proof, Proof) <—
non_singular(Goal),!.

filter_failure (commit, no, Copy, Goal, Proof,
fail(Goal, Failures))*—

% for single goals
get_proof(Goal, Prev.Failures),
append(Prev_Failures,commit(Copy, Proof), Failures).

There are two reasons for using a copy of the goal.

First, we are interested in keeping the actual un in­
stantiated goal and instantiate it as necessary. This is
to handle the effect of cut on commit t ing to bindings
as explained above. Second, for failures, the structure
fail(Goal, Failures) is used to collect the proofs of fai l­
ures for the actual goal Goal, where Failures is a list of
failures of this goal. Later, dur ing explanation, the ac­
tual goal in this structure is used to resolve the variable
differences in the tree by the scope informat ion in the
proofs of failure.

The non_singular predicate checks whether the given
goal is a construct, such as a disjunct ion, conjunct ion, if-
then-else or the cut, in fact any t i l ing other than a single
goal defined as a set of clauses in the program. Since com­
mi tment is propagated in Prolog in these constructs, the
interpreter must also adopt this behaviour. Upon check­
ing the goal, filter_failure either propagates commitment
or decides that a single goal u l t imately fails and collects
all the failures.

As mentioned earlier, generation of explanations ac­
tual ly depends on a good representation of the com­
putat ion. W i t h an appropriate representation such as
a proof tree, sti lted English statements can be formed
using straightforward techniques, described for example
in [Sterling and Shapiro, 1986]. Similar techniques are
used to make the proofs of computat ion collected by the
two-layer interpreter more understandable.

Instead of providing a ful l " trace" of the entire pro­
gram, any of the subgoals wi th in the body of the cur­
rently investigated clause can be chosen for further ex­
planat ion. This method allows the user to navigate the
tree as desired and the explanation for each clause is
given upon demand. In addi t ion, it is possible in our ex­
planation system to reinvestigate the computation pro­
cess by start ing f rom the top goal at any point , or go
back to the previous rule which has been investigated.

Let us i l lustrate the form of explanation generated
w i th an example. Consider the simple program below
that defines hypothet ical rules for Ph.D. candidacy. A
student is required either to take the qualifying test and
pass, or to take advanced courses and achieve a suffi­
ciently high grade point average.

candidacy(X) <—
phd_student(X), qualified_in_math(X).

qualified_in_math(X) <—
has_taken_test(X,math),!,
passed_test(X,math).

qualified_in_math(X) <—
has_advanced_courses(X,Y), !,
satisfies_gpa(X,Y).

has_taken.test(Person,Subject) <—
exam(Person,Subject, Date).

passed_test(Person,Subject) <—
result(Person,Subject, Date,pass).

phd_student(jim).
exam(jim,math jan 1988).
resultjj im.math jan l988,fail).

Sterling and Yalcinalp 69

The query ?~candidacy(jim) gives a "no" answer. The
explanation provided from the system is as below. User
responses are italicized.

candidacyj im) fails because in the clause definition
1. phcLstudent(jim) succeeds.
2. qualified_in_math(jim) fails.

> ? 2.
qualified_in_math(jim) fails because in the clause definition

1. has_taken_test(jim,math) succeeds.
2. passed_test(jim,math) fails.

and the goal qualified_in.math(jim) is committed
to this clause because there is a cut after has_taken_test.
> ? applicable_jrules.
2 rules in the database match the current goal.
The computation is committed to the 1st (current clause).
Therefore, the clause below is not reachable:
qualified_in_math(jim) <—

has_advanced_courses(jim,Y), !,
satisfies_gpa(jim,Y).

> ? 2.
passecLtest(jim,math) fails because in the clause definition

1. result(jim,math,Date,pass) fails.
> ? 1.
This goal does not match with the clause(s) of result/4.
There is 1 fact in the database for result/4:
result(jim, math jan 1988, fail).
> ? quit.
As can be seen from the example, the user can further
investigate the reasons of success or failure for each goal.
It is possible to request further explanation regarding
which clauses for the goal qualified_in_math(jim) are not
considered as alternative choices due to the presence of
the cut. Further meta-knowledge about facts, such as
result/4 will enhance the explanation capabilities.

The interpreter has been extended to generate detailed
explanations for arbitrary Prolog programs. Other fea­
tures can be easily integrated to this shell, as in a pre­
vious version [Yalcinalp and Sterling, 1988], to provide
history and depth information.

4 Explaining Partial Computations
The answer a user provides to a request for information
may depend on what has transpired in the computation
so far. Alternatively, as in an expert system for motor
selection being developed at Case Western Reserve Uni­
versity [Discenzo et a/., 1988], the user may demand to
see the history of the computation when answering a
why question. In either case, a "global picture" of the
computation must be provided.

Recall that a full description of the computation after
it terminates is contained in a proof tree. A fully instan-
tiated proof tree is not available for explanations during
the computation. However, a partially instantiated tree
which has full branches for completed portions of the
computation and uninstantiated nodes for incomplete
portions can be made available. We call this structure
a partial proof tree. It is similar to the partially specified
tree described in [Pereira and Shieber, 1987] for repre­
senting DCG parse trees during the parsing process.

A partial proof tree is easily generated by adding two

extra arguments to the interpreter in Figure 1. The first
argument represents the partial proof tree. It is dif­
ferent from the Proof argument described in the pre­
vious section and used in [Sterling and Lalee, 1986,
Yalcinalp and Sterling, 1988] because it can be accessed
at any time during the computation. The branches are
generated as a structure by using the second argument
which shows the current node of the partial proof tree.
The tree is instantiated at its leaves, when computation
finitely succeeds or fails. In the beginning of the com­
putation, these two additional arguments represent the
same entity, the uninstantiated tree, by the query :

?- solve_goal(Goal, Tree, Tree, Result).
The nodes are generated in the branch layer during

the computation by the second extra argument and the
full partial proof tree is passed to all layers of the compu­
tation. For example, the partial proof tree is generated
as follows for a conjunctive goal in the branch layer:
solve_branch((A,B),Tree,(PA,PB),Result) — !,

solve_goal(A,Tree,PA,RA),
solve_branch_and(RA,A, Result, B.Tree.PB).

When additional information is required by the in­
terpreter, the user interacts with the system during the
computation, by the last clause of solve.branch that rep­
resents askable goals. A how explanation of the partial
proof tree can be presented during the computation. This
is handled by passing the argument that represents the
partial proof tree to investigate .goal which provides the
how explanation. However, the explanation incorporates
the partial instantiations for clauses and informs the user
which goals which have not yet been solved.

5 Conclusions
The expressive power of the two-layer interpreter has
been illustrated in the previous sections. The execution
of the interpreter is faithful to Prolog's execution, al­
lowing the collection of information about the reasons
for failure, including branchies having been pruned due
to cuts. The execution does not require prior knowledge
of success and failure as in [Bruffaerts and Henin, 1988,
Sterling and Lalee, 1986] and all the computation is han­
dled by a single interpreter. We have also shown the util­
ity of generating partial proof trees. This allows explana­
tions to the user about the full computation both during
and at the termination of computation.

The two-layer interpreter can be modified, we believe,
to handle debugging systems in the style of Shapiro's
algorithmic debugging [Shapiro, 1983] as well as expla­
nation systems. At the moment, the clauses that are not
defined in the database are reported to the user as well
as the clauses defined but do not match with the current
goal. In addition, inaccesible clauses due to commitment
are also noted. Hence, deguggers can benefit from this
knowledge.

Our work can further be extended to explain Prolog
programming cliches which have primarily a procedural
reading. For example, a failure-driven loop, defined as
follows, is a common construct.

P— P 1 , P 2 , - f a i l -
P.

70 Tools

The success of the last clause is meaningful only in
relation to the repeated failure of the previous clause.
By recognizing this construct as a special case, the proof
tree kept for explaining the final clause will also contain
information about the previous failures. Other cliches in
this category are repeat loops, and cut-fail combinations.

More generally, we plan to investigate the interaction
between programming style and explanation generation.
A good way of using Prolog to construct expert systems
is to design and implement an embedded language. Ex­
planations should be in terms of the constructs of the
embedded language rather than Prolog structures. How­
ever Prolog constructs cannot be ignored entirely.

We conclude with a brief discussion of the signifi­
cance of our work to meta-level programming. Certain
aspects of the object level computation are explicitly rep­
resented in a meta-interpreter while others are kept im­
plicit. Those explicit aspects are said to be reified while
the implicit ones are absorbed. Reification and absorp­
tion were originally discussed for the Lisp community
by Smith [des Rivieres and Smith, 1984], and have been
used informally in logic programming by Ken Kahn and
Ehud Shapiro. Standard Prolog meta-interpreters reify
clause reduction and absorb unification, except for the
decomposition of constructs, such as conjunction and
disjunction. Failure is also absorbed in the standard four-
clause meta-interpreters hence we have no access to when
it occurs or how backtracking affects the computation. In
contrast, our layered abstraction reifies Prolog's control
flow, where the communication between the goals and
the state of the computation, namely success, failure or
commitment, is explicit. Prolog's unification mechanism
is absorbed in our model.

Other research in meta-level programming has pon­
dered the issue of reflection. We believe our work can
be discussed within this terminology, but to do so is be­
yond the scope of this paper. For an overview of current
meta-level programming and applications, see [Maes and
Nardi, 1988, Lloyd, 1988].

References
[Brayshaw and Eisenstadt, 1988] M. Brayshaw and M.

Eisenstadt. Adding data and Procedure Abstraction to
the Transparent Prolog Machine(TPM). Proceedings
of the 5th International Conference and Symposium
in Logic Programming, pp. 532-547, 1988.

[Bruffaerts and Henin, 1988]
A. Bruffaerts and E. Henin. Proof Trees for Nega­
tion as failure: Yet Another Prolog Meta Interpreter.
Proceedings of the 5th International Conference and
Symposium in Logic Programming, pp. 343-358, The
MIT Press, 1988.

[Clark and McCabe, 1982] K.L. Clark and F.G. Mc-
Cabe. PROLOG: a language for implementing expert
systems. Machine Intelligence 10 (eds. Hayes, Michie
and Pao), pp. 455-470, Ellis-Horwood, 1982.

[Discenzo et a/., 1988] F. Discenzo , G. W. Ernst, Z. M.
Ozsoyoglu, L. Sterling. Integration of Expert Sys­
tems and Database Technologies. Proceedings of AAAI

Workshop in Databases in Large AI Systems, pp. 71-
77, St. Paul, MN, August 1988.

[Hammond, 1984] P. Hammond. micro-PROLOG for
expert systems, in micro-PROLOG: Programming in
Logic, pp. 294-319, Prentice Hall International, 1984.

[Levi and Sardu, 1987] G. Levi and G. Sardu. Partial
Evaluation of metaprograms in a ''multiple worlds"
language, Proceedings of the Workshop on Partial and
Mixed Computation, Denmark, 1987.

[Lloyd, 1988] J. Lloyd erf. Proceedings of the Workshop
on Meta-Programming in Logic programming, Bristol,
June 1988. (to be published by M I T Press in 1989).

[Maes and Nardi, 1988] P. Maes and D. Nardi eds.
Meta-Level Architectures and Reflection. North-
Holland, 1988.

[Niblett, 1984] T. Niblett. YAPES - Yet Another Pro­
log Expert System. Tech Report, TIRM-84-008, The
Turing Institute, Glasgow, UK, 1984.

[Pereira and Shieber, 1987] F. Pereira and S.
M. Shieber. Prolog and Natural-Language Analysis.
CSLI Lecture Notes, CLSI, 1987.

[Pereira, 1986] L. M. Pereira. Rational Debugging in
Logic Programming. Proceedings of 3rd International
Logic Programming Conference, Lecture Notes in
Computer Science 225, pp. 203-210, Springer-Verlag,
1986.

[des Rivieres and Smith, 1984] J. des Rivieres, B. C.
Smith. The Implementation of Procedurally Reflective
Languages, Proceedings of ACM Symposium on LISP
and Functional Programming, pp. 331-347, 1984.

[Shapiro, 1983] E.Y. Shapiro. Algorithmic Program De­
bugging. MIT Press, 1983.

[Sterling, 1986] L. Sterling. Meta-interpreters: The Fla­
vors of Logic Programming?. Proceedings of Work­
shop on Foundations of Logic Programming and De­
ductive Databases, Washington, 1986.

[Sterling and Lakhotia, 1988] L. Sterling and A. Lakho-
tia. Composing Prolog Meta Interpreters. Proceedings
of the 5th International Conference and Symposium
in Logic Programming, pp. 386-403, The MIT Press,
1988.

[Sterling and Lalee, 1986] L. Sterling and M. Lalee. An
Explanation Shell for Expert Systems. Computational
Intelligence, pp. 136-141, 1986.

[Sterling and Shapiro, 1986] L. Sterling and E. Y.
Shapiro. The Art of Prolog. MIT Press, 1986.

[Walker et a/., 1987] A. Walker, M. McCord, J. Sowa
and W. Wilson. Knowledge Systems and Prolog.
Addison-Wesley, 1987.

[Yalcinalp and Sterling, 1988] L. U. Yalcinalp and L.
Sterling. An Integrated Interpreter for Explaining Pro­
log's Successes and Failures. Proceedings of the Work­
shop in Meta Programming in Logic Programming,
pp. 147-159, June, 1988. (to be published by M I T Press
in 1989)

Sterling and Yalcinalp 71

