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Abstract 

Abs t rac t 

This paper presents an improved method of ex­
plaining Prolog-based expert systems. The key 
idea is to make explicit failures during the com­
putation. This allows the integrated explana­
tion in a single interpreter of both successful 
and failed computations. It also allows rules 
containing cuts to be effectively explained. Fur­
thermore, the explanation system is interactive, 
and allows full explanation of both successful 
and failed partial computations. We discuss in 
some detail a two-layer meta-interpreter which 
is at the heart of the system. 

1 Constructs for Explanation 
In recent years, several systems have been developed for 
explaining the execution of Prolog. Applications of these 
systems have ranged from teaching Prolog [Brayshaw 
and Eisenstadt, 1988], debugging Prolog [Pereira, 1986, 
Shapiro, 1983], to presenting the results of Prolog-
based expert systems, [Clark and McCabe, 1982, Ham­
mond, 1984, Niblett, 1984, Sterling and Lalee, 1986, 
Walker et a/., 1987, Yalqinalp and Sterling, 1988]. In each 
case, extra mechanisms were added to make explicit the 
relevant features of Prolog's backward chaining behav­
ior. 

For example, the following constructs are needed to 
give MYCIN-like explanations of expert systems writ­
ten as collections of simple Prolog clauses. Proof trees 
represent successful branches of the search tree which is 
implicitly generated and traversed during a Prolog com­
putation. After completion of the computation, a proof 
tree is presented in a suitable format to answer ques­
tions about how a solution is computed. History lists 
represent the current branch of the search tree being 
traversed and are implemented as a stack of successive 
goals investigated up to the current goal. Whenever the 
user is consulted for information, for example to find a 
missing fact, which might be used to prove or refute the 
particular goal in question, she is allowed to inquire why 
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she is being consulted. More detailed information about 
these constructs can be found in [Sterling and Shapiro, 
1986]. 

Failure trees represent failure branches of the search 
tree that have been traversed during the computation. A 
variety of techniques have been used to selectively collect 
such failure branches, all of which are based on separate 
interpreters for successes and failures [Bruffaerts and 
Henin, 1988, Hammond, 1984, Sterling and Lalee, 1986, 
Walker et a/., 1987]. Failure trees are used to answer 
whynot questions. 

These constructs can be added directly to each clause 
in the Prolog program [Clark and McCabe, 1982]. 
A better approach is to write an enhanced ineta-
interpreter with the appropriate functionality. Most of 
the work cited above uses the standard four clause meta-
interpreter at the clause reduction level [Sterling and 
Shapiro, 1986]. 

Two classes of explanations based on these constructs 
can be differentiated. How and whynot explanations are 
provided after the computation. Why explanations, on 
the other hand, are given during the computation. 

This paper addresses two major limitations with cur­
rent explanation systems based on the variants of the 
meta-interpreter at the clause reduction level. The first 
is their inability to explain adequately extra-logical Pro-
log predicates, such as negation and cut. We don't ac­
cept the solution adopted in [Bruffaerts and Henin, 1988, 
Sterling and Lalee, 1986] for explaining negation using 
a totally separate program. Limitations arise from the 
way the control flow is being modelled by the meta-
interpreter. The abstraction of the computation in the 
systems above does not allow the failure mechanism of 
Prolog to be properly represented and controlled during 
this computation. 

The second limitation arises from the difference be­
tween the view of the computation presented to the user 
during the computation and that after the computation. 
Specifically, when answering a why question, the user 
only sees the sequence of rules/clauses currently being 
investigated, but not completed or failed portions of the 
computation in different parts of the search tree. In other 
words, the user is not presented with a global picture. In 
contrast, how and whynot explanations present a com­
plete computation. 

In this paper, we describe a two-layer meta-interpreter 
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with a different abstraction of the control flow than the 
standard meta-interpreter. The new meta-interpreter al­
lows proper explanations of extra-logical predicates such 
as the cut. Further, by introducing the concept of par­
tial proof trees, it treats explanations given both during 
and after the computation uniformly, and faithfully to 
Prolog's computation model. 

2 A Two-Layer Meta-interpreter 
A good explanation depends on a good representation of 
the computation at an appropriate level of abstraction. 
The major limitation of current explanations of Prolog-
based systems stems from handling failure too implicitly. 
Failure in Prolog is composed of two different events. 
First, a failure occurs when a particular goal fails to unify 
with any of the existing clauses in the program. This fail­
ure causes backtracking to generate alternative solutions. 
Second, if all backtracking efforts result in failure for all 
clause definitions of a goal, Prolog answers "no". 

The inability to unify, and the exhaustion of al­
ternatives for a goal are implicitly used in most re­
ported work, but not explicitly represented. The stan­
dard meta-interpreter can be augmented with a result 
variable to make it fail-safe [Levi and Sardu, 1987, 
Sterling and Lakhotia, 1988]. This makes fail ure infor­
mation available but changes the behaviour of Prolog. 

Prolog's behaviour can be kept while maintaining ex­
plicit failures by building a meta-interpreter in two lay­
ers. We call the first layer of the interpreter the goal 
layer, while the second layer is called the branch layer. 
The goal layer uses the predicate solve_branch to gener­
ate each possible computation of the goal being solved. 
The result of the computation, either yes or no, is re­
turned by the second argument of solve.branch. Note 
that the solve_ branch layer is fail-safe. This result is then 
filtered by the goal layer to recover Prolog's behaviour. 
Its essence is captured in the predicate, solve.goal, de­
fined as follows. 

solve_goal(Goal,Result) <— 
sol ve_branch( Goal, Result), 
filter_failure(Result). 

solve_goal(Goal,no). 

filter_failure(yes). 
filter_failure(no) <— fail. 

The branch layer is similar to the standard meta-
interpreter at the clause reduction level. The complete 
code for the two-layer interpreter is given in Figure 1. 
The scope of the interpreter is given by the clauses for 
solve_branch. In particular, it covers conjunctive goals, 
system goals, negated goals, single goals (namely rules), 
conditionals, set predicates, such as findall and askable 
goals. 

Note that the two events involved in Prolog's failure 
mechanism have been made explicit. Failure to unify is 
indicated by a solve_branch clause, which returns a "no". 
This occurs when none of the clauses in the database 
are unifiable with the current goal. This is recognized 
by using the negation of the built-in clause(Goal,Body) 
in Prolog. Backtracking is initiated by the failure of 

f i l te r_ fa i lure. This explicit representation of failure will 
be used in extending the interpreter later. 

This two-layer interpreter follows the computation 
model of Prolog faithfully. Failure can be controlled and 
used to represent the result of a computation. Further, 
all computation is handled by a single interpreter. There 
is no reason to wait for the result of computation for a 
goal to detect failures, as in other systems [Bruffaerts 
and Henin, 1988, Sterling and Lalee, 1986]. The com­
putation, as in Prolog, is performed only once, which 
allows the interpreter to correctly handle programs with 
side-effects. 

The presence of two layers makes it straightforward to 
handle negation-as-failure correctly, as follows: 

solve_branch(not Goal,Result) <— 
solve_goal(Goal,Result-Not), !, invert(Result_Not,Result). 

invert(yes.no). 
invert(no.yes). 

We next demonstrate how the two layer approach facil­
itates the handling of cuts. A third result is used, namely 
commit, which represents a special type of failure due to 
commitment in the body of a clause. In the branch layer, 
Prolog's clause ordering is exploited to achieve the de­
sired result. 

solve_branch(!,yes). 
solve_branch(!,commit) <— !. 

Obtaining a commit result at a branch can affect the 
program in two ways, depending on the type of the goal. 

• For a series of conjunctive 
goals, <— P1, P2,..., Pi, ..., Pn, a cut can be any of 
these goals in the body. We retain the value of the 
computation, namely commit, as a failure occuring 
due to a commitment for the entire conjunction and 
inform the parent goal. If the cut is the final goal, 
Pn, then the result of the computation will be com-
mil by the solve.branch clause above. If this goal is 
Pi and the result of the computation of P i+1,..., Pn 
is "no", then the result of the computation in the 
branch layer is commit. This is then handled in the 
goal layer of the interpreter, as seen in Figure 1. 

• For a single goal, a commitment at the branches 
means an immediate failure as it is the parent goal. 
That means a commit result for a branch of the sin­
gle goal actually indicates a no result in the goal 
layer, and the goal should no longer investigate 
other possibilities via different clause definitions in 
the branch layer. 

Handling cuts correctly is achieved by modifying fil­
­­­­failure and solve.goal Now, filter_failure acts as an­
other "port" for indicating overall failure upon com­
mitment by returning a ''no" result for a single goal. 
Solve_goal is altered to make the interpreter actually 
commit itself by placing a cut in the goal layer. This 
prevents backtracking of the interpreter back to the 
branches wliich generate alternative solutions. The mod­
ified goal layer is represented in Figure 1. 
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% GOAL LAYER 

Figure 1: The Layered Interpreter 
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To handle the effect of cuts on instant iat ing variables 
correctly, a copy of the goal is needed. Since the com­
mi tment would instant iate the actual goal, the bindings 
wi l l be propagated w i th in the tree. In order to be fai th­
ful to the execution process, the actual goal should be 
uninstant iated upon fai lure. To have a uni form struc­
ture, the copy of the actual goal is used for creating the 
branches and expl ici t unif icat ion w i th this goal happens 
upon success. 

Other control predicates can be handled in our frame-
work. For example, the extension for the if-then-else con­
struct , P —► Q\R, is immediate. The interpeter uses the 
Result of the goal defining the condit ional part , if, to de­
fine and control the result of the branch defining the the 
construct. It is shown in the fu l l interpreter in Figure 1. 

3 Explanat ions Generated by the 
Layered Meta- In terpre ter 

An extra argument, Proof, is used for collecting proofs 
in the branch layer of the interpreter. This is a standard 
technique discussed in [Sterling and Shapiro, 1986] and 
used in [BruiTaerts and Henin, 1988, Sterl ing and Lalee, 
1986, Yalcinalp and Sterl ing, 1988], etc. The proofs, both 
of successes and failures, arc t ransmit ted to the goal layer 
at this layer's exit points. 

The exit points of the goal layer are filter .failure, upon 
success or fai lure due to commitment , and the second 
clause of solve .goal upon u l t imate failure of the goal. 
Since this interpreter does not know in advance whether 
a goal wi l l u l t imate ly fai l or not, the proof is kept by the 
goal layer when a "no" result occurs in the branch layer. 
If there is no commi tment , the alternative solutions are 
generated by imposing failure. Upon generating a suc­
cess, a "yes" result by the branch layer, all the previously 
encountered failures are discarded since they are not rel­
evant. However a fai lure, which occurs by commitment 
or u l t imate fai lure of all branches, enables the interpreter 
to collect the proofs of all the failure brandies that are 
previously stored. The method is shown below: 

solve_goal(Goal,Result,Proof) <— 
copy(Goal.Copy), 
solve_branch( Copy, BResuIt, B Proof), 
(BResult = commit —► !;true), 
filter_failure(BRcsult, Result, Copy.Goal.BProof, Proof), 

solve_goal(GoaI,no,fail(Goal,Failures)) <— 
get_proof( Goal, Failures). 

filter_failure(yes,yes, Copy, Goal, Proof, Proof) <— 
get_proof( Goal, Failures), 
Goal = Copy. 

filter_failure(no,_,Copy,_,BProof,_) <— 
store(Copy,BProof), !, fail. 

fi lter_failure(commit,commit, Copy, Goal, Proof, Proof) <— 
non_singular(Goal),!. 

filter_failure (commit, no, Copy, Goal, Proof, 
fail( Goal, Failures))*— 

% for single goals 
get_proof(Goal, Prev.Failures), 
append(Prev_Failures,commit( Copy, Proof), Failures). 

There are two reasons for using a copy of the goal. 

First, we are interested in keeping the actual un in­
stantiated goal and instantiate it as necessary. This is 
to handle the effect of cut on commit t ing to bindings 
as explained above. Second, for failures, the structure 
fail(Goal, Failures) is used to collect the proofs of fai l­
ures for the actual goal Goal, where Failures is a list of 
failures of this goal. Later, dur ing explanation, the ac­
tual goal in this structure is used to resolve the variable 
differences in the tree by the scope informat ion in the 
proofs of failure. 

The non_singular predicate checks whether the given 
goal is a construct, such as a disjunct ion, conjunct ion, if-
then-else or the cut, in fact any t i l ing other than a single 
goal defined as a set of clauses in the program. Since com­
mi tment is propagated in Prolog in these constructs, the 
interpreter must also adopt this behaviour. Upon check­
ing the goal, filter_failure either propagates commitment 
or decides that a single goal u l t imately fails and collects 
all the failures. 

As mentioned earlier, generation of explanations ac­
tual ly depends on a good representation of the com­
putat ion. W i t h an appropriate representation such as 
a proof tree, sti lted English statements can be formed 
using straightforward techniques, described for example 
in [Sterling and Shapiro, 1986]. Similar techniques are 
used to make the proofs of computat ion collected by the 
two-layer interpreter more understandable. 

Instead of providing a ful l " trace" of the entire pro­
gram, any of the subgoals wi th in the body of the cur­
rently investigated clause can be chosen for further ex­
planat ion. This method allows the user to navigate the 
tree as desired and the explanation for each clause is 
given upon demand. In addi t ion, it is possible in our ex­
planation system to reinvestigate the computation pro­
cess by start ing f rom the top goal at any point , or go 
back to the previous rule which has been investigated. 

Let us i l lustrate the form of explanation generated 
w i th an example. Consider the simple program below 
that defines hypothet ical rules for Ph.D. candidacy. A 
student is required either to take the qualifying test and 
pass, or to take advanced courses and achieve a suffi­
ciently high grade point average. 

candidacy(X) <— 
phd_student(X), qualified_in_math(X). 

qualified_in_math(X) <— 
has_taken_test(X,math),!, 
passed_test(X,math). 

qualified_in_math(X) <— 
has_advanced_courses(X,Y), !, 
satisfies_gpa(X,Y). 

has_taken.test(Person,Subject) <— 
exam( Person,Subject, Date). 

passed_test(Person,Subject) <— 
result(Person,Subject, Date,pass). 

phd_student(jim). 
exam(jim,math jan 1988). 
resultjj im.math jan l988,fail). 
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The query ?~candidacy(jim) gives a "no" answer. The 
explanation provided from the system is as below. User 
responses are italicized. 

candidacyj im) fails because in the clause definition 
1. phcLstudent(jim) succeeds. 
2. qualified_in_math(jim) fails. 

> ? 2. 
qualified_in_math(jim) fails because in the clause definition 

1. has_taken_test(jim,math) succeeds. 
2. passed_test(jim,math) fails. 

and the goal qualified_in.math(jim) is committed 
to this clause because there is a cut after has_taken_test. 
> ? applicable_jrules. 
2 rules in the database match the current goal. 
The computation is committed to the 1st (current clause). 
Therefore, the clause below is not reachable: 
qualified_in_math(jim) <— 

has_advanced_courses(jim,Y), !, 
satisfies_gpa(jim,Y). 

> ? 2. 
passecLtest(jim,math) fails because in the clause definition 

1. result(jim,math,Date,pass) fails. 
> ? 1. 
This goal does not match with the clause(s) of result/4. 
There is 1 fact in the database for result/4: 
result(jim, math jan 1988, fail). 
> ? quit. 
As can be seen from the example, the user can further 
investigate the reasons of success or failure for each goal. 
It is possible to request further explanation regarding 
which clauses for the goal qualified_in_math(jim) are not 
considered as alternative choices due to the presence of 
the cut. Further meta-knowledge about facts, such as 
result/4 will enhance the explanation capabilities. 

The interpreter has been extended to generate detailed 
explanations for arbitrary Prolog programs. Other fea­
tures can be easily integrated to this shell, as in a pre­
vious version [Yalcinalp and Sterling, 1988], to provide 
history and depth information. 

4 Explaining Partial Computations 
The answer a user provides to a request for information 
may depend on what has transpired in the computation 
so far. Alternatively, as in an expert system for motor 
selection being developed at Case Western Reserve Uni­
versity [Discenzo et a/., 1988], the user may demand to 
see the history of the computation when answering a 
why question. In either case, a "global picture" of the 
computation must be provided. 

Recall that a full description of the computation after 
it terminates is contained in a proof tree. A fully instan-
tiated proof tree is not available for explanations during 
the computation. However, a partially instantiated tree 
which has full branches for completed portions of the 
computation and uninstantiated nodes for incomplete 
portions can be made available. We call this structure 
a partial proof tree. It is similar to the partially specified 
tree described in [Pereira and Shieber, 1987] for repre­
senting DCG parse trees during the parsing process. 

A partial proof tree is easily generated by adding two 

extra arguments to the interpreter in Figure 1. The first 
argument represents the partial proof tree. It is dif­
ferent from the Proof argument described in the pre­
vious section and used in [Sterling and Lalee, 1986, 
Yalcinalp and Sterling, 1988] because it can be accessed 
at any time during the computation. The branches are 
generated as a structure by using the second argument 
which shows the current node of the partial proof tree. 
The tree is instantiated at its leaves, when computation 
finitely succeeds or fails. In the beginning of the com­
putation, these two additional arguments represent the 
same entity, the uninstantiated tree, by the query : 

?- solve_goal(Goal, Tree, Tree, Result). 
The nodes are generated in the branch layer during 

the computation by the second extra argument and the 
full partial proof tree is passed to all layers of the compu­
tation. For example, the partial proof tree is generated 
as follows for a conjunctive goal in the branch layer: 
solve_branch((A,B),Tree,(PA,PB),Result) — !, 

solve_goal(A,Tree,PA,RA), 
solve_branch_and(RA,A, Result, B.Tree.PB). 

When additional information is required by the in­
terpreter, the user interacts with the system during the 
computation, by the last clause of solve.branch that rep­
resents askable goals. A how explanation of the partial 
proof tree can be presented during the computation. This 
is handled by passing the argument that represents the 
partial proof tree to investigate .goal which provides the 
how explanation. However, the explanation incorporates 
the partial instantiations for clauses and informs the user 
which goals which have not yet been solved. 

5 Conclusions 
The expressive power of the two-layer interpreter has 
been illustrated in the previous sections. The execution 
of the interpreter is faithful to Prolog's execution, al­
lowing the collection of information about the reasons 
for failure, including branchies having been pruned due 
to cuts. The execution does not require prior knowledge 
of success and failure as in [Bruffaerts and Henin, 1988, 
Sterling and Lalee, 1986] and all the computation is han­
dled by a single interpreter. We have also shown the util­
ity of generating partial proof trees. This allows explana­
tions to the user about the full computation both during 
and at the termination of computation. 

The two-layer interpreter can be modified, we believe, 
to handle debugging systems in the style of Shapiro's 
algorithmic debugging [Shapiro, 1983] as well as expla­
nation systems. At the moment, the clauses that are not 
defined in the database are reported to the user as well 
as the clauses defined but do not match with the current 
goal. In addition, inaccesible clauses due to commitment 
are also noted. Hence, deguggers can benefit from this 
knowledge. 

Our work can further be extended to explain Prolog 
programming cliches which have primarily a procedural 
reading. For example, a failure-driven loop, defined as 
follows, is a common construct. 

P— P 1 , P 2 , - f a i l -
P. 
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The success of the last clause is meaningful only in 
relation to the repeated failure of the previous clause. 
By recognizing this construct as a special case, the proof 
tree kept for explaining the final clause will also contain 
information about the previous failures. Other cliches in 
this category are repeat loops, and cut-fail combinations. 

More generally, we plan to investigate the interaction 
between programming style and explanation generation. 
A good way of using Prolog to construct expert systems 
is to design and implement an embedded language. Ex­
planations should be in terms of the constructs of the 
embedded language rather than Prolog structures. How­
ever Prolog constructs cannot be ignored entirely. 

We conclude with a brief discussion of the signifi­
cance of our work to meta-level programming. Certain 
aspects of the object level computation are explicitly rep­
resented in a meta-interpreter while others are kept im­
plicit. Those explicit aspects are said to be reified while 
the implicit ones are absorbed. Reification and absorp­
tion were originally discussed for the Lisp community 
by Smith [des Rivieres and Smith, 1984], and have been 
used informally in logic programming by Ken Kahn and 
Ehud Shapiro. Standard Prolog meta-interpreters reify 
clause reduction and absorb unification, except for the 
decomposition of constructs, such as conjunction and 
disjunction. Failure is also absorbed in the standard four-
clause meta-interpreters hence we have no access to when 
it occurs or how backtracking affects the computation. In 
contrast, our layered abstraction reifies Prolog's control 
flow, where the communication between the goals and 
the state of the computation, namely success, failure or 
commitment, is explicit. Prolog's unification mechanism 
is absorbed in our model. 

Other research in meta-level programming has pon­
dered the issue of reflection. We believe our work can 
be discussed within this terminology, but to do so is be­
yond the scope of this paper. For an overview of current 
meta-level programming and applications, see [Maes and 
Nardi, 1988, Lloyd, 1988]. 
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