Assignment 5 – Thesaurus
Deadline 08/01/07
In this assignment you will implement a thesaurus, which is a dictionary for synonyms (similar words) and antonyms (counter words).
Each word in the thesaurus will be associated with two lists, one of its synonyms, and the other of its antonyms.
1- What does Thesaurus-Handling Means Logically?

Bellow we present few important notations about handling a consistent and reliable thesaurus.
The thesaurus has the following attributes:

1) Commutative

- If word A is a synonym of word B, then word B is a synonym of word A.

- If word A is an antonym of word B then word B is an antonym of word A.

2) Transitivity

- If word A is a synonym of word B, and word B is a synonym of word C, then word A is a synonym of word C.

3) Semi-Transitivity

- If word A is a synonym of word B and word B is an antonym of word C then word A is an antonym of word C

- If word A is an antonym of word B and word B is a synonym of word C then word A is an antonym of word C.

4) Anti-Transitivity

- If word A is an antonym of word B and word B is an antonym of word C then word A is a synonym of word C.

For example:

1) "little" is a synonym of "small", and "small" is a synonym of "little".

2) "little" is a synonym of "small", "small" is an antonym of "big", and "little" is an antonym of "big".

3) "big" is an antonym of "small", "small" is a synonym of "little", and "big" is an antonym of "little".

4) "big" is an antonyms of "small", "small" is an antonyms of "large", and "big" is a synonym of "large".

Consistent:

To keep the thesaurus reliable, it has to be free from contradictions. Contradiction might occur if you would have insert pair of synonym words, and then the same pair as antonym words. It also might happen because of one of the transitivity rule.

In general, contradictions might occur only when you insert a pair where both words are already in the thesaurus. Hence, we will restrict ourselves, and insert to the thesaurus only pairs with at least one new word.
2- Actions Performed on a Thesaurus:
Your program should be able to perform the next actions:

1. Add a pair of synonyms or antonyms words to the thesaurus.

2. Delete a given word from the thesaurus.

3. Print the lists of synonyms and antonyms of a given word.

4. Print the thesaurus.

5. Exit.
Note:
Input issues are discussed later, in section 3.

You might understand better the actions after reading also section 4.
For the printing format, look at the screenshots, and read additional explanations if added.

2.1: Add a pair of synonyms or antonyms words to the thesaurus:

Inserting a synonyms pair:

(First, you have to check if at least one of the words is new. If both words are in the thesaurus, the pair will not be inserted to the thesaurus, and you present a proper message to the user. E.g., when trying to insert the pair "wah" and "bahh", if both words are in the thesaurus, you should present the message:

wah and bahh are both in thesaurus. Action denied.

Otherwise, there are two possibilities: either the words are both new, or one is new and the other is old. In both cases, to keep the logical manner of the thesaurus, there are few things that should be done, as described bellow:
In case both words are new: (word_1 and word_2):
(Insert each one of the two words to the thesaurus-list.
(Insert word_1 to the synonyms-list of word_2 and vice versa (i.e. also insert word_2 to the synonyms-list of word_1).
If one of the words is new (new_word) and the second is old (old_word), then:

(Insert new_word to the thesaurus-list.

(Insert new_word to the synonyms-list of old_word and vice versa (i.e. also insert old_word to the synonyms-list of new_word).
(For each word in the synonyms-list of old_word, insert new_word to its synonyms-list and vice versa (i.e. if the synonyms-list of old_word contains the words word_a, word_b, etc, then insert new_word to the synonyms-lists of word_a, and word_a to the synonyms-list of new_word, etc).
(For each word in the antonyms-list of old_word, insert new_word to its antonyms-list and vice versa (i.e. if the antonyms-list of old_word contains the words word_a, word_b, etc, then insert new_word to the antonyms-lists of word_a, and word_a to the antonyms-list of new_word, etc).

Similarly, inserting an antonyms pair:
(First, you have to check if at least one of the words is new. If both words are in the thesaurus, the pair will not be inserted to the thesaurus, and you present the same message as when inserting a synonym pair.
Otherwise, either the words are both new, or one is new and the other is old. In both cases, there are few things that should be done, as described bellow:

In case both words are new: (word_1 and word_2):

(Insert each one of the two words to the thesaurus-list.

(Insert word_1 to the antonyms-list of word_2 and vice versa.

If one of the words is new (new_word) and the second is old (old_word), then:

(Insert new_word to the thesaurus-list.

(Insert new_word to the antonyms-list of old_word and vice versa.
(For each word in the synonyms-list of old_word, insert new_word to its antonyms-list and vice versa.
(For each word in the antonyms-list of old_word, insert new_word to its synonyms-list and vice versa.
2.2: Delete a given word from the thesaurus.

Deleting a word:
In case the word is not on the thesaurus, a proper message should be present to the user. E.g., when trying to delete the word "nice", that is not in the thesaurus, you should print:

nice is not on the thesaurus. Action denied.
If the word is in the thesaurus:
(Remove all the appearances of the word from the entire thesaurus. That is removing the word from all the synonyms-lists of words on its own synonyms-list, and from all the antonyms-lists of words on its own antonyms-list.
(Empty the synonyms and antonyms lists of the word.

(Remove the word from the thesaurus-list.
2.3: Print the lists of synonyms and antonyms for a given word.

Print data for a given word:

If the word is not on thesaurus, you should print a proper message. E.g., if the word is "high" you should print:
high is not on the thesaurus.

If the word is on the thesaurus, you should print its data. E.g., if the word is "nice":

and assume the synonyms-list containing the words "lovely" and "beautiful", and antonyms-list is empty. Output should look like on the screenshot bellow.
[image: image6.png]

Note:

The line bellow the word is made from the char '-', and is in the same length as the word itself.

Between two words, put a single space and in the end of the list (also for empty list) put a single space following by a dot.

The lists should be sorted, check if your printouts are sorted…
2.4: Print the thesaurus.

If the thesaurus is empty, you should print:

The thesaurus is empty.

Otherwise, print a title:

Thesaurus:

=========

This is, the word "Thesaurus:" with line made of 9 '=' under it. Keep one empty line, and then perform the action of printing a given word for the whole thesaurus, keeping one empty line between two words.
2.5: Exit.
(Empty the thesaurus.
(Print:

Good Bye!
(Exit.
3: Menu and Input:
At the beginning, and after each step until user choose to exit from the program, a menu should be displayed, suggesting the user few options, as described above in section 2.
Menu's text should be exactly the same as in the frame bellow:
[image: image2.jpg]

You may not assume that user will insert only one of the allowed characters (i.e. one of the letters A-E). You should wait until the user enters an allowed character.
For each option chosen by the user, that requires further input, the computer should print a statement asking for this further input, go down one line, and read the input. The different statements and the formats of the further inputs are described bellow:

3.1: Add a pair to Thesaurus:
The statement:

Please enter a pair of words:

Input's format:

word1 sign word2
where word1 and word2 contains letters only, and sign is either == (which means synonyms), or != (which means antonyms), note that there is a space between the words and the sign. Examples for input:
beautiful == nice
or:

nice != ugly
You may assume that the input is in the format mentioned above, and that each one of the words is with length no more than 10 character.
Naturally, you don't have to use real words, the pair blabla == jhdjkfh is legal, but it is much nicer to use real words with their real meaning.
3.2: Delete a word from Thesaurus:
The statement:

Please enter the word you want to delete:

Input is a single word contains letters only, e.g:

nice

3.3: Print synonyms and antonyms for a word:
The statement:

Please enter a word:
Input is a single word contains letters only.
3.4: Print the Thesaurus:
No input is required.

3.5: Exit the program:
No input is required.

4- Structures:

You may use the following structures:

#define MAX_WORD_LEN 10

typedef struct _SourceWord SourceWord;

typedef struct _NymWord
 NymWord;

struct _SourceWord{

char

word[MAX_WORD_LEN + 1];
/*key value*/

SourceWord
*next;
/*next item in thesaurus list*/

NymWord
*synonyms;
/*synonyms list*/

NymWord
*antonyms;
/*antonyms list*/

};

struct _NymWord{

char

word[MAX_WORD_LEN + 1];
/*key value*/

NymWord
*next;
/*next item in Xnyms-list*/

SourceWord
*source; /*associated node in thesaurus list*/

};

To understand better those definitions, take a look on the diagram bellow, where SourceWord is shown in red and NymWord is shown in blue.

[image: image3]
Make sure that you use the field source of NymWord, which provides you a direct access to the associated node in the thesaurus-list rather than using a search function that should pass the whole thesaurus.
Appendix:

Assume we entered the following pairs to the thesaurus:

nice == lovely

lovely == beautiful

beautiful != ugly

ugly == unattractive

Then we get the structure bellow:
NOTE that most of the pointers from NymWords to SourceWords are omitted from this diagram, of course, they must exist in the implementation!!!

[image: image4]
Notes
· Don't forget to write clear comments, and provide the variables with meaningful names.

· You may only use things that were learnt in class or things that are specifically mentioned in this assignment.


It is highly recommended that you check that your program compiles and runs properly on Microsoft® Visual C++ 6.0 or 2005, before you submit them.


Instructions on how and where to submit your program, can be found here: "submission instructions" .
Good Luck!

nice

lovely

beautiful

ugly

nice

lovely

beautiful

unattractive

unattractive

lovely

ugly

beautiful

unattractive

nice

ugly

beautiful

unattractive

nice

ugly

lovely

thesaurus-list

unattractive

ugly

nice

lovely

beautiful

nice

lovely

ugly

lovely

ugly

nice

thesaurus-list

ugly

nice

lovely

[image: image1.jpg]synonyns: heautiful lovely .

antonyms: .

[image: image5.png]

