
1/3/12 What is the order of evaluation in C#? - The Old New Thing - Site Home - …

1/22blogs.msdn.com/b/oldnewthing/archive/2007/08/14/4374222.aspx

The Old New Thing

What is the order of evaluation in C#?

6814 Aug 2007 10:00 AM

The C and C++ languages leave the order of evaluation generally unspecified aside from
specific locations called sequence points. Side effects of operations performed prior to the
sequence point are guaranteed visible to operations performed after it.¹ For example, the C
comma operator introduces a sequence point. When you write f () , g () , the language
guarantees that any changes to program state made by the function f can be seen by the
function g ; f executes before g . On the other hand, the multiplication operator does not
introduce a sequence point. If you write f () * g () there is no guarantee which side will
be evaluated first.

(Note that order of evaluation is not the same as associativity and operator precedence.
Given the expression f () + g () * h () , operator precedence says that it should be
evaluated as if it were written f () + (g () * h ()) , but that doesn't say what order the
three functions will be evaluated. It merely describes how the results of the three functions
will be combined.)

In the C# language, the order of evaluation is spelled out more explicitly. The order of
evaluation for operators is left to right. if you write f () + g () in C#, the language
guarantees that f () will be evaluated first. The example in the linked-to page is even
clearer. The expression F (i) + G (i + +) * H (i) is evaluated as if it were written like
this:

W H P S � � �) � L � �

W H P S � � �L � � �

W H P S � � �* � W H P S � � �

W H P S � � �+ � L � �

U H W X U Q �W H P S � �� �W H P S � � �W H P S � �

The side effects of each part of the expression take effect in left-to-right order. Even the
order of evaluation of function arguments is strictly left-to-right.

Note that the compiler has permission to evaluate the operands in a different order if it can
prove that the alternate order of evaluation has the same effect as the original one (in the
absence of asynchronous exceptions).

Why does C# take a much more restrictive view of the order of evaluation? I don't know, but
I can guess.²

My guess is that the language designers wanted to reduce the frequency of a category of
subtle bugs (in this case, order-of-evaluation dependency). There are many other examples
of this in the language design. Consider:

F O DV V �$ �̂

�Y R L G �I � �

�̂

��L Q W �L � �� �

��L I �� W U X H � �̂

���L Q W �L � �� � �� � �H U U R U �� �U H G H F O DU DW L R Q

��̀

�̀

�L Q W �[�

�Y R L G �J � �

�̂

1/3/12 What is the order of evaluation in C#? - The Old New Thing - Site Home - …

2/22blogs.msdn.com/b/oldnewthing/archive/2007/08/14/4374222.aspx

��[� �� � �� � �H U U R U �� �X V L Q J �Y DU L DE O H �E H I R U H �G H F O DU H G

��L Q W �[� �� �

�̀

`

The language designers specified that the scope of a local variable in C# extends to the
entire block in which it is declared. As a first consequence of this, the second declaration of
i in the function f () is illegal since its scope overlaps with the scope of the first
declaration. This removes a class of bugs that can be traced to one local variable masking
another with the same name.

In the function g () the assignment x = 3 ; is illegal because the x refers not to the
member variable but to the local variable declared below it. Notice that the scope of the local
variable begins with the entire block, and not with the point of declaration as it would have
been in C++.

Nitpicker's Corner

¹This is a simplified definition of sequence point. For more precise definitions, consult the
relevant standards documents.

²I have not historically included the sentence "I don't know but I can guess" because this is a
blog, not formal documentation. Everything is my opinion, recollection, or interpretation. But it
seems that people take what I say to establish the official Microsoft position on things, so
now I have to go back and add explicit disclaimers.

Blog - Comment List MSDN TechNet

Comments

Karellen # 14 Aug 2007 10:18 AM

Uh - hang on. If shadowing variables is now allowed and i cannot shadow i, how come
x can shadow x? The outer x is declared in the block defining "class A", so should
overlap the x in A::g.

Shouldn't it? Or have I misread something?

Second, if the scope of a variable covers the whole block, not just from the point of
declaration, why can't you do:

class A {

 void f() {

 x = 3;

 int x;

 }

}

Doesn't the fact that that doesn't work mean that the variable's scope *does* begin
only at the point of declaration? If not, what does saying that a variable's scope
begins at the start of the block mean? How is it different from it's scope starting at
the point of declaration?

confused

[Don't be lazy. I'm not going to do your homework for you. Read the C# language
specification. Section 5.1.7 ("Local Variables") will be useful. -Raymond]

