1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
| function [errmsg,Z,X,t,c,fail] = BNB20(fun,x0,xstat,xl,xu,a,b,aeq,beq,nonlc,setts,opts,varargin);
% BNB20 Finds the constrained minimum of a function of several possibly integer variables.
% Usage: [errmsg,Z,X,t,c,fail] =
% BNB20(fun,x0,xstatus,xlb,xub,A,B,Aeq,Beq,nonlcon,settings,options,P1,P2,...)
%
% BNB solves problems of the form:
% Minimize F(x) subject to: xlb <= x0 <=xub
% A*x <= B Aeq*x=Beq
% C(x)<=0 Ceq(x)=0
% x(i) is continuous for xstatus(i)=0
% x(i) integer for xstatus(i)= 1
% x(i) fixed for xstatus(i)=2
%
% BNB uses:
% Optimization Toolbox Version 2.0 (R11) 09-Oct-1998
% From this toolbox fmincon.m is called. For more info type help fmincon.
%
% fun is the function to be minimized and should return a scalar. F(x)=feval(fun,x).
% x0 is the starting point for x. x0 should be a column vector.
% xstatus is a column vector describing the status of every variable x(i).
% xlb and xub are column vectors with lower and upper bounds for x.
% A and Aeq are matrices for the linear constrains.
% B and Beq are column vectors for the linear constrains.
% nonlcon is the function for the nonlinear constrains.
% [C(x);Ceq(x)]=feval(nonlcon,x). Both C(x) and Ceq(x) should be column vectors.
%
% errmsg is a string containing an error message if BNB found an error in the input.
% Z is the scalar result of the minimization, X the values of the accompanying variables.
% t is the time elapsed while the algorithm BNB has run and c is the number of BNB cycles.
% fail is the number of nonconvergent leaf sub-problems.
%
% settings is a row vector with settings for BNB:
% settings(1) (standard 0) if 1: if the sub-problem does not converge do not branch it and
% raise fail by one. Normally BNB will always branch a nonconvergent sub-problem so it can
% try again to find a solution.
% A sub-problem that is a leaf of the branch-and-bound-tree cannot be branched. If such
% a problem does not converge it will be considered infeasible and fail will be raised by one.
% settings(2) is the handle of main BNB GUI. Leave empty.
% options is an options structure. For details type help optimset.
% options.maxSQPiter is a variable used by fmincon (if modified as described in bnb20.m).
% maxSQPiter cannot be set by optimset because it is not part of the standard options
% structure. maxSQPiter is 1000 by default.
% P1,P2,... are parameters to be passed to fun and nonlcon.
% F(x)=feval(fun,x,P1,P2,...). [C(x);Ceq(x)]=feval(nonlcon,x,P1,P2,...).
% Type edit BNB20 for more info.
% To get rid of bugs and to stop fmincon from hanging make the following chances:
%
% In optim/private/nlconst.m ($Revision: 1.20 $ $Date: 1998/08/24 13:46:15 $):
% Get EXITFLAG independent of verbosity.
% After the lines: disp(' less than 2*options.TolFun but constraints are not satisfied.')
% end
% EXITFLAG = -1;
% end
% end
% status=1;
% add the line: if (strncmp(howqp, 'i',1) & mg > 0), EXITFLAG = -1; end;
%
% In optim/private/qpsub.m ($Revision: 1.21 $ $Date: 1998/09/01 21:37:56 $):
% Stop qpsub from hanging.
% After the line: % Andy Grace 7-9-90. Mary Ann Branch 9-30-96.
% add the line: global maxSQPIter;
% and changed the line: maxSQPiters = Inf;
% to the line: if exist('maxSQPiter','var'), maxSQPiters = maxSQPiter; else maxSQPiters=inf; end;
% I guess there was a reason to put maxSQPiters at infinity, but this works fine for me.
global maxSQPiter;
% STEP 0 CHECKING INPUT
Z=[]; X=[]; t=0; c=0; fail=0;
if nargin<2, errmsg='BNB needs at least 2 input arguments.'; return; end;
if isempty(fun), errmsg='No fun found.'; return;
elseif ~ischar(fun), errmsg='fun must be a string.'; return; end;
if isempty(x0), errmsg='No x0 found.'; return;
elseif ~isnumeric(x0) | ~isreal(x0) | size(x0,2)>1
errmsg='x0 must be a real column vector.'; return;
end;
xstatus=zeros(size(x0));
if nargin>2 & ~isempty(xstat)
if isnumeric(xstat) & isreal(xstat) & all(size(xstat)<=size(x0))
if all(xstat==round(xstat) & 0<=xstat & xstat<=2)
xstatus(1:size(xstat))=xstat;
else errmsg='xstatus must consist of the integers 0,1 en 2.'; return; end;
else errmsg='xstatus must be a real column vector the same size as x0.'; return; end;
end;
xlb=zeros(size(x0));
xlb(find(xstatus==0))=-inf;
if nargin>3 & ~isempty(xl)
if isnumeric(xl) & isreal(xl) & all(size(xl)<=size(x0))
xlb(1:size(xl,1))=xl;
else errmsg='xlb must be a real column vector the same size as x0.'; return; end;
end;
if any(x0<xlb), errmsg='x0 must be in the range xlb <= x0.'; return;
elseif any(xstatus==1 & (~isfinite(xlb) | xlb~=round(xlb)))
errmsg='xlb(i) must be an integer if x(i) is an integer variabele.'; return;
end;
xlb(find(xstatus==2))=x0(find(xstatus==2));
xub=ones(size(x0));
xub(find(xstatus==0))=inf;
if nargin>4 & ~isempty(xu)
if isnumeric(xu) & isreal(xu) & all(size(xu)<=size(x0))
xub(1:size(xu,1))=xu;
else errmsg='xub must be a real column vector the same size as x0.'; return; end;
end;
if any(x0>xub), errmsg='x0 must be in the range x0 <=xub.'; return;
elseif any(xstatus==1 & (~isfinite(xub) | xub~=round(xub)))
errmsg='xub(i) must be an integer if x(i) is an integer variabale.'; return;
end;
xub(find(xstatus==2))=x0(find(xstatus==2));
A=[];
if nargin>5 & ~isempty(a)
if isnumeric(a) & isreal(a) & size(a,2)==size(x0,1), A=a;
else errmsg='Matrix A not correct.'; return; end;
end;
B=[];
if nargin>6 & ~isempty(b)
if isnumeric(b) & isreal(b) & all(size(b)==[size(A,1) 1]), B=b;
else errmsg='Column vector B not correct.'; return; end;
end;
if isempty(B) & ~isempty(A), B=zeros(size(A,1),1); end;
Aeq=[];
if nargin>7 & ~isempty(aeq)
if isnumeric(aeq) & isreal(aeq) & size(aeq,2)==size(x0,1), Aeq=aeq;
else errmsg='Matrix Aeq not correct.'; return; end;
end;
Beq=[];
if nargin>8 & ~isempty(beq)
if isnumeric(beq) & isreal(beq) & all(size(beq)==[size(Aeq,1) 1]), Beq=beq;
else errmsg='Column vector Beq not correct.'; return; end;
end;
if isempty(Beq) & ~isempty(Aeq), Beq=zeros(size(Aeq,1),1); end;
nonlcon='';
if nargin>9 & ~isempty(nonlc)
if ischar(nonlc), nonlcon=nonlc;
else errmsg='fun must be a string.'; return; end;
end;
settings = [0 0];
if nargin>10 & ~isempty(setts)
if isnumeric(setts) & isreal(setts) & all(size(setts)<=size(settings))
settings(setts~=0)=setts(setts~=0);
else errmsg='settings should be a row vector of length 1 or 2.'; return; end;
end;
maxSQPiter=1000;
options=optimset('fmincon');
if nargin>11 & ~isempty(opts)
if isstruct(opts)
if isfield(opts,'MaxSQPIter')
if isnumeric(opts.MaxSQPIter) & isreal(opts.MaxSQPIter) & ...
all(size(opts.MaxSQPIter)==1) & opts.MaxSQPIter>0 & ...
round(opts.MaxSQPIter)==opts.MaxSQPIter
maxSQPiter=opts.MaxSQPIter;
opts=rmfield(opts,'MaxSQPIter');
else errmsg='options.maxSQPiter must be an integer >0.'; return; end;
end;
options=optimset(options,opts);
else errmsg='options must be a structure.'; return; end;
end;
evalreturn=0;
eval(['z=',fun,'(x0,varargin{:});'],'errmsg=''fun caused error.''; evalreturn=1;');
if evalreturn==1, return; end;
if ~isempty(nonlcon)
eval(['[C, Ceq]=',nonlcon,'(x0,varargin{:});'],'errmsg=''nonlcon caused error.''; evalreturn=1;');
if evalreturn==1, return; end;
if size(C,2)>1 | size(Ceq,2)>1, errmsg='C en Ceq must be column vectors.'; return; end;
end;
% STEP 1 INITIALISATION
currentwarningstate=warning;
warning off;
tic;
lx = size(x0,1);
z_incumbent=inf;
x_incumbent=inf*ones(size(x0));
I = ceil(sum(log2(xub(find(xstatus==1))-xlb(find(xstatus==1))+1))+size(find(xstatus==1),1)+1);
stackx0=zeros(lx,I);
stackx0(:,1)=x0;
stackxlb=zeros(lx,I);
stackxlb(:,1)=xlb;
stackxub=zeros(lx,I);
stackxub(:,1)=xub;
stackdepth=zeros(1,I);
stackdepth(1,1)=1;
stacksize=1;
xchoice=zeros(size(x0));
if ~isempty(Aeq)
j=0;
for i=1:size(Aeq,1)
if Beq(i)==1 & all(Aeq(i,:)==0 | Aeq(i,:)==1)
J=find(Aeq(i,:)==1);
if all(xstatus(J)~=0 & xchoice(J)==0 & xlb(J)==0 & xub(J)==1)
if all(xstatus(J)~=2) | all(x0(J(find(xstatus(J)==2)))==0)
j=j+1;
xchoice(J)=j;
if sum(x0(J))==0, errmsg='x0 not correct.'; return; end;
end;
end;
end;
end;
end;
errx=optimget(options,'TolX');
handleupdate=[];
if ishandle(settings(2))
taghandlemain=get(settings(2),'Tag');
if strcmp(taghandlemain,'main BNB GUI')
handleupdate=guiupd;
handleupdatemsg=findobj(handleupdate,'Tag','updatemessage');
bnbguicb('hide main');
drawnow;
end;
end;
optionsdisplay=getfield(options,'Display');
if strcmp(optionsdisplay,'iter') | strcmp(optionsdisplay,'final')
show=1;
else show=0; end;
% STEP 2 TERMINIATION
while stacksize>0
c=c+1;
% STEP 3 LOADING OF CSP
x0=stackx0(:,stacksize);
xlb=stackxlb(:,stacksize);
xub=stackxub(:,stacksize);
x0(find(x0<xlb))=xlb(find(x0<xlb));
x0(find(x0>xub))=xub(find(x0>xub));
depth=stackdepth(1,stacksize);
stacksize=stacksize-1;
percdone=round(100*(1-sum(0.5.^(stackdepth(1:(stacksize+1))-1))));
% UPDATE FOR USER
if ishandle(handleupdate) & strcmp(get(handleupdate,'Tag'),'update BNB GUI')
t=toc;
updatemsg={ ...
sprintf('searched %3d %% of three',percdone) ...
sprintf('Z : %12.4e',z_incumbent) ...
sprintf('t : %12.1f secs',t) ...
sprintf('c : %12d cycles',c-1) ...
sprintf('fail : %12d cycles',fail)};
set(handleupdatemsg,'String',updatemsg);
drawnow;
else
disp(sprintf('*** searched %3d %% of three',percdone));
disp(sprintf('*** Z : %12.4e',z_incumbent));
disp(sprintf('*** t : %12.1f secs',t));
disp(sprintf('*** c : %12d cycles',c-1));
disp(sprintf('*** fail : %12d cycles',fail));
end;
% STEP 4 RELAXATION
[x z convflag]=fmincon(fun,x0,A,B,Aeq,Beq,xlb,xub,nonlcon,options,varargin{:});
% STEP 5 FATHOMING
K = find(xstatus==1 & xlb~=xub);
separation=1;
if convflag<0 | (convflag==0 & settings(1))
% FC 1
separation=0;
if show, disp('*** branch pruned'); end;
if convflag==0,
fail=fail+1;
if show, disp('*** not convergent'); end;
elseif show, disp('*** not feasible');
end;
elseif z>=z_incumbent & convflag>0
% FC 2
separation=0;
if show
disp('*** branch pruned');
disp('*** ghosted');
end;
elseif all(abs(round(x(K))-x(K))<errx) & convflag>0
% FC 3
z_incumbent = z;
x_incumbent = x;
separation = 0;
if show
disp('*** branch pruned');
disp('*** new best solution found');
end;
end;
% STEP 6 SELECTION
if separation == 1 & ~isempty(K)
dzsep=-1;
for i=1:size(K,1)
dxsepc = abs(round(x(K(i)))-x(K(i)));
if dxsepc>=errx | convflag==0
xsepc = x; xsepc(K(i))=round(x(K(i)));
dzsepc = abs(feval(fun,xsepc,varargin{:})-z);
if dzsepc>dzsep
dzsep=dzsepc;
ixsep=K(i);
end;
end;
end;
% STEP 7 SEPARATION
if xchoice(ixsep)==0
% XCHOICE==0
branch=1;
domain=[xlb(ixsep) xub(ixsep)];
sepdepth=depth;
while branch==1
xboundary=(domain(1)+domain(2))/2;
if x(ixsep)<xboundary
domainA=[domain(1) floor(xboundary)];
domainB=[floor(xboundary+1) domain(2)];
else
domainA=[floor(xboundary+1) domain(2)];
domainB=[domain(1) floor(xboundary)];
end;
sepdepth=sepdepth+1;
stacksize=stacksize+1;
stackx0(:,stacksize)=x;
stackxlb(:,stacksize)=xlb;
stackxlb(ixsep,stacksize)=domainB(1);
stackxub(:,stacksize)=xub;
stackxub(ixsep,stacksize)=domainB(2);
stackdepth(1,stacksize)=sepdepth;
if domainA(1)==domainA(2)
stacksize=stacksize+1;
stackx0(:,stacksize)=x;
stackxlb(:,stacksize)=xlb;
stackxlb(ixsep,stacksize)=domainA(1);
stackxub(:,stacksize)=xub;
stackxub(ixsep,stacksize)=domainA(2);
stackdepth(1,stacksize)=sepdepth;
branch=0;
else
domain=domainA;
branch=1;
end;
end;
else
% XCHOICE~=0
L=find(xchoice==xchoice(ixsep));
M=intersect(K,L);
[dummy,N]=sort(x(M));
part1=M(N(1:floor(size(N)/2))); part2=M(N(floor(size(N)/2)+1:size(N)));
sepdepth=depth+1;
stacksize=stacksize+1;
stackx0(:,stacksize)=x;
O = (1-sum(stackx0(part1,stacksize)))/size(part1,1);
stackx0(part1,stacksize)=stackx0(part1,stacksize)+O;
stackxlb(:,stacksize)=xlb;
stackxub(:,stacksize)=xub;
stackxub(part2,stacksize)=0;
stackdepth(1,stacksize)=sepdepth;
stacksize=stacksize+1;
stackx0(:,stacksize)=x;
O = (1-sum(stackx0(part2,stacksize)))/size(part2,1);
stackx0(part2,stacksize)=stackx0(part2,stacksize)+O;
stackxlb(:,stacksize)=xlb;
stackxub(:,stacksize)=xub;
stackxub(part1,stacksize)=0;
stackdepth(1,stacksize)=sepdepth;
end;
elseif separation==1 & isempty(K)
fail=fail+1;
if show
disp('*** branch pruned');
disp('*** leaf not convergent');
end;
end;
end;
% STEP 8 OUTPUT
t=toc;
Z = z_incumbent;
X = x_incumbent;
errmsg='';
if ishandle(handleupdate)
taghandleupdate=get(handleupdate,'Tag');
if strcmp(taghandleupdate,'update BNB GUI')
close(handleupdate);
end;
end;
eval(['warning ',currentwarningstate]);
********************************************************
normalement si je veux appliquer ce code à un model mathématique simple, je dois déclarer tt les parametres de fonction BNB20 (fun,x0,xstatus...ect).
avec fun c la fonction obective que je veux minimiser.
mais quand j essaie d ecrire :
fun= 4*x+3*y;
x0= [0 0];
xstatus= [1 1];
xlb=[0;0];
xub=[inf; inf];
A= [1;2;3;4];
B= [1;2]; |
Partager