Bonjour, je suis en train de développer un algorithme sur lequel je bute depuis pas mal de temps. Je pense pas que ce soit la théorie mais plutôt une erreur dans le code. Je développe en Objective-C/C et avec OpenGL ES 1.0.
Je suis passé à autre chose car j'ai buté sur ce problème pendant 1 semaine.
Pouvez vous m'aider, j'en perd des cheveux...

La matrice viewPort n'est pas changé et de même pour la matrice projection.

Voici le code sur les calculs matriciels:
Code C++ : Sélectionner tout - Visualiser dans une fenêtre à part
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
// Compute the dot product of two vector
float dotProduct(const Vector3D a,const Vector3D b) 
{
	return a.x*b.x+a.y*b.y+a.z*b.z;
}
 
// Compute the cross product of two vector
Vector3D crossProduct(const Vector3D a,const Vector3D b)
{
	Vector3D tmp={a.y*b.z - a.z*b.y,a.z*b.x - a.x*b.z,a.x*b.y - a.y*b.x};
	return tmp;
}
/*
 * Perform a 4x4 matrix multiplication  (product = a x b).
 * Input:  a, b - matrices to multiply
 * Output:  product - product of a and b
 */
void matmul(GLfloat * product, const GLfloat * a, const GLfloat * b)
{
	// Pour éviter 
	GLfloat temp[16];
	GLint i;
	//<<2 =*4
#define A(row,col)  a[(col<<2)+row]
#define B(row,col)  b[(col<<2)+row]
#define T(row,col)  temp[(col<<2)+row]
 
	/* i-te Zeile */
	for (i = 0; i < 4; ++i) 
	{
		T(i, 0) = A(i, 0) * B(0, 0) + A(i, 1) * B(1, 0) + A(i, 2) * B(2, 0) + A(i, 3) * B(3, 0);
		T(i, 1) = A(i, 0) * B(0, 1) + A(i, 1) * B(1, 1) + A(i, 2) * B(2, 1) + A(i, 3) * B(3, 1);
		T(i, 2) = A(i, 0) * B(0, 2) + A(i, 1) * B(1, 2) + A(i, 2) * B(2, 2) + A(i, 3) * B(3, 2);
		T(i, 3) = A(i, 0) * B(0, 3) + A(i, 1) * B(1, 3) + A(i, 2) * B(2, 3) + A(i, 3) * B(3, 3);
	}
 
#undef A
#undef B
#undef T
	memcpy(product, temp, 16 * sizeof(GLfloat));
}
 
/*
 * Compute inverse of 4x4 transformation matrix.
 * Return GL_TRUE for success, GL_FALSE for failure (singular matrix)
 */
GLboolean invert_matrix(const GLfloat * m, GLfloat * out)
{
	/* NB. OpenGL Matrices are COLUMN major.{ a^= b; b^=a; a^=b; } */
#define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; } 
#define MAT(m,r,c) (m)[((c)<<2)+(r)]
 
	GLfloat wtmp[4][8];
	GLfloat m0, m1, m2, m3, s;
	GLfloat *r0, *r1, *r2, *r3;
 
	r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
 
	r0[0] = MAT(m, 0, 0), r0[1] = MAT(m, 0, 1),
	r0[2] = MAT(m, 0, 2), r0[3] = MAT(m, 0, 3),
	r0[4] = 1.0f, r0[5] = r0[6] = r0[7] = 0.0f,
	r1[0] = MAT(m, 1, 0), r1[1] = MAT(m, 1, 1),
	r1[2] = MAT(m, 1, 2), r1[3] = MAT(m, 1, 3),
	r1[5] = 1.0f, r1[4] = r1[6] = r1[7] = 0.0f,
	r2[0] = MAT(m, 2, 0), r2[1] = MAT(m, 2, 1),
	r2[2] = MAT(m, 2, 2), r2[3] = MAT(m, 2, 3),
	r2[6] = 1.0f, r2[4] = r2[5] = r2[7] = 0.0f,
	r3[0] = MAT(m, 3, 0), r3[1] = MAT(m, 3, 1),
	r3[2] = MAT(m, 3, 2), r3[3] = MAT(m, 3, 3),
	r3[7] = 1.0f, r3[4] = r3[5] = r3[6] = 0.0f;
 
	/* choose pivot - or die */
	if (fabsf(r3[0]) > fabsf(r2[0]))
		SWAP_ROWS(r3, r2);
	if (fabsf(r2[0]) > fabsf(r1[0]))
		SWAP_ROWS(r2, r1);
	if (fabsf(r1[0]) > fabsf(r0[0]))
		SWAP_ROWS(r1, r0);
	if (0.0f == r0[0])
		return GL_FALSE;
 
	/* eliminate first variable     */
	m1 = r1[0] / r0[0];
	m2 = r2[0] / r0[0];
	m3 = r3[0] / r0[0];
	s = r0[1];
	r1[1] -= m1 * s;
	r2[1] -= m2 * s;
	r3[1] -= m3 * s;
	s = r0[2];
	r1[2] -= m1 * s;
	r2[2] -= m2 * s;
	r3[2] -= m3 * s;
	s = r0[3];
	r1[3] -= m1 * s;
	r2[3] -= m2 * s;
	r3[3] -= m3 * s;
	s = r0[4];
	if (s != 0.0f) {
		r1[4] -= m1 * s;
		r2[4] -= m2 * s;
		r3[4] -= m3 * s;
	}
	s = r0[5];
	if (s != 0.0f) {
		r1[5] -= m1 * s;
		r2[5] -= m2 * s;
		r3[5] -= m3 * s;
	}
	s = r0[6];
	if (s != 0.0f) {
		r1[6] -= m1 * s;
		r2[6] -= m2 * s;
		r3[6] -= m3 * s;
	}
	s = r0[7];
	if (s != 0.0f) {
		r1[7] -= m1 * s;
		r2[7] -= m2 * s;
		r3[7] -= m3 * s;
	}
 
	/* choose pivot - or die */
	if (fabsf(r3[1]) > fabsf(r2[1]))
		SWAP_ROWS(r3, r2);
	if (fabsf(r2[1]) > fabsf(r1[1]))
		SWAP_ROWS(r2, r1);
	if (0.0f == r1[1])
		return GL_FALSE;
 
	/* eliminate second variable */
	m2 = r2[1] / r1[1];
	m3 = r3[1] / r1[1];
	r2[2] -= m2 * r1[2];
	r3[2] -= m3 * r1[2];
	r2[3] -= m2 * r1[3];
	r3[3] -= m3 * r1[3];
	s = r1[4];
	if (0.0f != s) {
		r2[4] -= m2 * s;
		r3[4] -= m3 * s;
	}
	s = r1[5];
	if (0.0f != s) {
		r2[5] -= m2 * s;
		r3[5] -= m3 * s;
	}
	s = r1[6];
	if (0.0f != s) {
		r2[6] -= m2 * s;
		r3[6] -= m3 * s;
	}
	s = r1[7];
	if (0.0f != s) {
		r2[7] -= m2 * s;
		r3[7] -= m3 * s;
	}
 
	/* choose pivot - or die */
	if (fabsf(r3[2]) > fabsf(r2[2]))
		SWAP_ROWS(r3, r2);
	if (0.0f == r2[2])
		return GL_FALSE;
 
	/* eliminate third variable */
	m3 = r3[2] / r2[2];
	r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
	r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7];
 
	/* last check */
	if (0.0f == r3[3])
		return GL_FALSE;
 
	s = 1.0f / r3[3];		/* now back substitute row 3 */
	r3[4] *= s;
	r3[5] *= s;
	r3[6] *= s;
	r3[7] *= s;
 
	m2 = r2[3];			/* now back substitute row 2 */
	s = 1.0f / r2[2];
	r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
	r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
	m1 = r1[3];
	r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
	r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
	m0 = r0[3];
	r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
	r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
 
	m1 = r1[2];			/* now back substitute row 1 */
	s = 1.0f / r1[1];
	r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
	r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
	m0 = r0[2];
	r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
	r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
 
	m0 = r0[1];			/* now back substitute row 0 */
	s = 1.0f / r0[0];
	r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
	r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
 
	MAT(out, 0, 0) = r0[4];
	MAT(out, 0, 1) = r0[5], MAT(out, 0, 2) = r0[6];
	MAT(out, 0, 3) = r0[7], MAT(out, 1, 0) = r1[4];
	MAT(out, 1, 1) = r1[5], MAT(out, 1, 2) = r1[6];
	MAT(out, 1, 3) = r1[7], MAT(out, 2, 0) = r2[4];
	MAT(out, 2, 1) = r2[5], MAT(out, 2, 2) = r2[6];
	MAT(out, 2, 3) = r2[7], MAT(out, 3, 0) = r3[4];
	MAT(out, 3, 1) = r3[5], MAT(out, 3, 2) = r3[6];
	MAT(out, 3, 3) = r3[7];
 
	return GL_TRUE;
 
#undef MAT
#undef SWAP_ROWS
}
 
/* projection of the point (objx,objy,obz) on the screen (winx,winy,winz) */
//GLint GLAPIENTRY;
GLboolean gluProject(GLfloat objx, GLfloat objy, GLfloat objz,
							const GLfloat model[16], const GLfloat proj[16],
							const GLint viewport[4],
							GLfloat * winx, GLfloat * winy, GLfloat * winz)
{
	/* transformation matrix */
	GLfloat in[4], out[4];
 
	/* initialize the matrix and the vector a transformer */
	in[0] = objx;
	in[1] = objy;
	in[2] = objz;
	in[3] = 1.0f;
	transform_point(out, model, in);
	transform_point(in, proj, out);
	/* To avoid a error of the type division by ZERO */
	if (in[3] == 0.0f)
		return GL_FALSE;
 
	in[0] /= in[3];
	in[1] /= in[3];
	in[2] /= in[3];
 
	/* screen coordinate */
	*winx = viewport[0] + (1.0f + in[0]) * viewport[2] / 2.0f;
	*winy = viewport[1] + (1.0f + in[1]) * viewport[3] / 2.0f;
	/* between 0 and 1 next z */
	*winz = (1.0f + in[2]) / 2.0f;
	return GL_TRUE;
}
 
/* transformation du point ecran (winx,winy,winz) en point objet */
//GLint GLAPIENTRY
GLboolean gluUnProject(GLfloat winx, GLfloat winy, GLfloat winz,
							  const GLfloat model[16], const GLfloat proj[16],
							  const GLint viewport[4],
							  GLfloat * objx, GLfloat * objy, GLfloat * objz)
{
	/* transformation matrices */
	GLfloat m[16], A[16];
	GLfloat in[4], out[4];
 
	/* Normalization between -1 et 1 */
	in[0] = (winx - viewport[0]) * 2.0f / viewport[2] - 1.0f;
	in[1] = (winy - viewport[1]) * 2.0f / viewport[3] - 1.0f;
	in[2] = 2.0f * winz - 1.0f;
	in[3] = 1.0f;
 
	/* We calcul the inverse transformation*/
	matmul(A, proj, model);
	invert_matrix(A, m);
 
	/* whence the coordinatennees objets */
	transform_point(out, m, in);
	if (out[3] == 0.0f)
		return GL_FALSE;
	*objx = out[0] / out[3];
	*objy = out[1] / out[3];
	*objz = out[2] / out[3];
	return GL_TRUE;
}

et voici le code concernant le raytracer qui lance un rayon à partir de l'endroit où on a cliqué:
Code C++ : Sélectionner tout - Visualiser dans une fenêtre à part
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
-(Boolean) checkFaces:(CGPoint)winPos
{
	checking=TRUE;
	//opengl 0,0 is at the bottom not at the top
	winPos.y = (float)viewport[3] - winPos.y;
 
	Vector3D nearPoint;
	Vector3D rayOrigin;
	Vector3D farPoint;
	Vector3D rayVector;
	glGetFloatv( GL_PROJECTION_MATRIX,projection );
	glGetFloatv( GL_MODELVIEW_MATRIX,modelview );
 
	// float winZ;
	//we cannot do the following in openGL ES due to tile rendering
	// glReadPixels( (int)winPos.x, (int)winPos.y, 1, 1, GL_DEPTH_COMPONENT24_OES, GL_FLOAT, &winZ );
 
	//Retreiving position projected on near plan
 
	gluUnProject( winPos.x, winPos.y ,0, modelview, projection, viewport, &nearPoint.x, &nearPoint.y, &nearPoint.z);
	rayOrigin=nearPoint;
 
	//Retreiving position projected on far plan
	gluUnProject( winPos.x, winPos.y,  1, modelview, projection, viewport, &farPoint.x, &farPoint.y, &farPoint.z);
 
 
	//Processing ray vector
	rayVector.x = farPoint.x - nearPoint.x;
	rayVector.y = farPoint.y - nearPoint.y;
	rayVector.z = farPoint.z - nearPoint.z;
 
	float rayLength = sqrtf(POW2(rayVector.x) + POW2(rayVector.y) + POW2(rayVector.z));
 
	//normalizing ray vector
	rayVector.x /= rayLength;
	rayVector.y /= rayLength;
	rayVector.z /= rayLength;
 
 
	static const GLfloat cubeIn[24][4] ={
 
        {1.0, -1.0, -1.0,1.0},             
        { 1.0, -1.0, 1.0,1.0},           
        {-1.0, -1.0, 1.0,1.0},             
        {-1.0, -1.0, -1.0,1.0},              
 
        {1.0, 1.0, -1.0,1.0},           
        {-1.0, 1.0, -1.0,1.0},             
        {-1.0, 1.0, 1.0,1.0},              
        {1.0, 1.0, 1.0,1.0},             
 
        {1.0, -1.0, -1.0,1.0},         
        {1.0, 1.0, -1.0,1.0},           
        {1.0, 1.0, 1.0,1.0},           
        {1.0, -1.0, 1.0,1.0},            
 
        {1.0, -1.0, 1.0,1.0},
        {1.0, 1.0, 1.0,1.0},
        {-1.0, 1.0, 1.0,1.0},
        {-1.0, -1.0, 1.0,1.0},
 
        {-1.0, -1.0, 1.0,1.0},
        {-1.0, 1.0, 1.0,1.0},
        {-1.0, 1.0, -1.0,1.0},
        {-1.0, -1.0, -1.0,1.0},
 
        {1.0, 1.0, -1.0,1.0},
        {1.0, -1.0, -1.0,1.0},
        {-1.0, -1.0, -1.0,1.0},
        {-1.0, 1.0, -1.0,1.0}
    };  
	GLfloat cubeOut[24][4]; 
	short unsigned i,j=0;
	iVideo=-1;
	CGFloat distanceMin=1e30f;
	Vector3D vertices[3];
 
	//We keep the coordinates of the cube in the model view system
	for (i=0; i<24; ++i) 
	{
		transform_point(cubeOut[i], modelview, cubeIn[i]);
		Vector3D temp={cubeOut[i][0],cubeOut[i][1],cubeOut[i][2]};
		vertices[j]=temp;
		++j;
		if (j==3) 
		{
			j=0;
			float t=[self intersectionSurface:rayOrigin rayVector:rayVector Vector1:vertices[2] Vector2:vertices[1] Vector3:vertices[0] distance:distanceMin];
			if (t<distanceMin) 
			{
				distanceMin=t;
				//=>i>>2
				iVideo=i/4;
 
			}
			++i;
			temp.x=cubeOut[i][0];
			temp.y=cubeOut[i][1];
			temp.z=cubeOut[i][2];
			t=[self intersectionSurface:rayOrigin rayVector:rayVector Vector1:temp Vector2:vertices[2] Vector3:vertices[1] distance:distanceMin];
			if(t<distanceMin) 
			{
				distanceMin=t;
				//=>i>>2
				iVideo=i/4;
			}
		}
	}
 
	checking=FALSE;
 
	if (iVideo>-1) 
	{
		short unsigned b=iVideo*4,i=0;
		short unsigned count=b+5;
		coordinates[0]=cubeOut[b][0];
		coordinates[1]=cubeOut[b][0];
		coordinates[2]=cubeOut[b][1];
		coordinates[3]=cubeOut[b][1];
		for (i=b; i<count; ++i) 
		{
			if (coordinates[0]>cubeOut[i][0]) 
			{
				coordinates[0]=cubeOut[i][0];
			}
 
			if (coordinates[1]<cubeOut[i][0]) 
			{
				coordinates[1]=cubeOut[i][0];
			}
			if (coordinates[2]<cubeOut[i][1]) 
			{
				coordinates[2]=cubeOut[i][1];
			}
 
			if (coordinates[3]>cubeOut[i][1]) 
			{
				coordinates[3]=cubeOut[i][1];
			}
 
			if (coordinates[4]<cubeOut[i][2]) 
			{
				coordinates[4]=cubeOut[i][2];
			}
 
			if (coordinates[5]>cubeOut[i][2]) 
			{
				coordinates[5]=cubeOut[i][2];
			}
		}
		coordinates[0]=-1-coordinates[0];
		coordinates[1]=1-coordinates[1];
		coordinates[2]=-1-coordinates[2];
		coordinates[3]=1-coordinates[3];
 
		return TRUE;
	}
	else 
	{
		return FALSE;	
	}
 
}
 
-(float) intersectionSurface:(Vector3D)rayOrigin rayVector:(Vector3D) rayVector Vector1:(Vector3D) p0 Vector2:(Vector3D) p1 Vector3:(Vector3D) p2 distance:(float) distanceMin
{
	//Value which means that the method return an error or value laid aside
	const float kNoIntersection=1e30f;
 
	//Vectors of the plane
	Vector3D a={p1.x-p0.x,p1.y-p0.y,p1.z-p0.z};
	Vector3D b={p2.x-p1.x,p2.y-p1.y,p2.z-p1.z};
	//Normal at the surface
	Vector3D normal=crossProduct(a, b);
 
	//We verify if the result designs a parallel ray or not
	CGFloat dot=dotProduct(normal,rayVector);
	if(!(dot<0.0f))
	{
		return kNoIntersection;	
	}
 
	//equivalente of the equation of the surface in one point
	CGFloat d=dotProduct(normal,p0);
	//distance between the origin and the surface
	CGFloat t=d-dotProduct(normal,rayOrigin);
	if(!(t<=0.0f))
	{
		return kNoIntersection;	
	}
 
	if (!(t>=dot*distanceMin)) 
	{
		return kNoIntersection;
	}
 
 
	t/=dot;
	assert(t>=0.0f);
	assert(t<=distanceMin);
 
 
	//Compute 3D point of intersection
	Vector3D p;
	p.x=rayOrigin.x+rayVector.x*t;
	p.y=rayOrigin.y+rayVector.y*t;
	p.z=rayOrigin.z+rayVector.z*t;
 
	//Find dominant axis to select which plane to project onto, and compute u's and v's
	float u0,u1,u2;
	float v0,v1,v2;
	if (fabs(normal.x)>fabs(normal.y)) 
	{
		if (fabs(normal.x)>fabs(normal.z)) 
		{
			u0=p.y-p0.y;
			u1=p1.y-p0.y;
			u2=p2.y-p0.y;
 
			v0=p.z-p0.z;
			v1=p1.z-p0.z;
			v2=p2.z-p0.z;
		}
		else 
		{
			u0=p.x-p0.x;
			u1=p1.x-p0.x;
			u2=p2.x-p0.x;
 
			v0=p.y-p0.y;
			v1=p1.y-p0.y;
			v2=p2.y-p0.y;	
		}
	}
	else 
	{
		if (fabs(normal.y)>fabs(normal.z)) 
		{
			u0=p.x-p0.x;
			u1=p1.x-p0.x;
			u2=p2.x-p0.x;
 
			v0=p.z-p0.z;
			v1=p1.z-p0.z;
			v2=p2.z-p0.z;
		}
		else 
		{
			u0=p.x-p0.x;
			u1=p1.x-p0.x;
			u2=p2.x-p0.x;
 
			v0=p.y-p0.y;
			v1=p1.y-p0.y;
			v2=p2.y-p0.y;
		}
	}
	//Compute denominator, check for invalid
 
	float temp=u1*v2-v1*u2;
	if(!(temp!=0.0f))
	{
		return kNoIntersection;
	}
	temp=1.0f/temp;
 
	//Compute barycentric coords, checking for out-of-range
	//at each step
	float alpha=(u0*v2-v0*u2)*temp;
	if(!(alpha>=0.0f))
	{
		return kNoIntersection;	
	}
 
	float beta=(u1*v0-v1*u0)*temp;
	if(!(beta>=0.0f))
	{
		return kNoIntersection;	
	}
 
	float gamma=1.0f-alpha-beta;
	if(!(gamma>=0.0f))
	{
		return kNoIntersection;	
	}
	//Return parametric point of intersection
	return t;
}