1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
| function J=regiongrowing(imgg,x,y,reg_maxdist)
% This function performs "region growing" in an image from a specified
% seedpoint (x,y)
%
% J = regiongrowing(I,x,y,t)
%
% I : input image
% J : logical output image of region
% x,y : the position of the seedpoint (if not given uses function getpts)
% t : maximum intensity distance (defaults to 0.2)
%
% Author: D. Kroon, University of Twente
%
% The region is iteratively grown by comparing all unallocated neighbouring pixels to the region.
% The difference between a pixel's intensity value and the region's mean,
% is used as a measure of similarity. The pixel with the smallest difference
% measured this way is allocated to the respective region.
% This process stops when the intensity difference between region mean and
% new pixel become larger than a certain treshold (t)
%
% Example:
%
% I = im2double(imread('medtest.png'));
% x=198; y=359;
% J = regiongrowing(I,x,y,0.2);
% figure, imshow(I+J);
if(exist('reg_maxdist','var')==0), reg_maxdist=0.2; end
if(exist('y','var')==0), figure, imshow(imgg,[]); [y,x]=getpts; y=round(y(1)); x=round(x(1)); end
J = zeros(size(imgg)); % Output
Isizes = size(imgg); % Dimensions of input image
reg_mean = imgg(x,y); % The mean of the segmented region
reg_size = imgg; % Number of pixels in region
% Free memory to store neighbours of the (segmented) region
neg_free = 10000; neg_pos=0;
neg_list = zeros(neg_free,3);
pixdist=0; % Distance of the region newest pixel to the regio mean
% Neighbor locations (footprint)
neigb=[-1 0; 1 0; 0 -1;0 1];
% Start regiogrowing until distance between regio and posible new pixels become
% higher than a certain treshold
while(pixdist<reg_maxdist & reg_size<numel(imgg))
% Add new neighbors pixels
for j=1:4,
% Calculate the neighbour coordinate
xn = x +neigb(j,1); yn = y +neigb(j,2);
% Check if neighbour is inside or outside the image
ins=(xn>=1)&&(yn>=1)&&(xn<=Isizes(1))&&(yn<=Isizes(2));
% Add neighbor if inside and not already part of the segmented area
if(ins&&(J(xn,yn)==0))
neg_pos = neg_pos+1;
neg_list(neg_pos,:) = [xn yn imgg(xn,yn)]; J(xn,yn)=1;
end
end
% Add a new block of free memory
if(neg_pos+10>neg_free), neg_free=neg_free+10000; neg_list((neg_pos+1):neg_free,:)=0; end
% Add pixel with intensity nearest to the mean of the region, to the region
dist = abs(neg_list(1:neg_pos,3)-reg_mean);
[pixdist, index] = min(dist);
J(x,y)=2; reg_size=reg_size+1;
% Calculate the new mean of the region
reg_mean= (reg_mean*reg_size + neg_list(index,3))/(reg_size+1);
% Save the x and y coordinates of the pixel (for the neighbour add proccess)
x = neg_list(index,1); y = neg_list(index,2);
% Remove the pixel from the neighbour (check) list
neg_list(index,:)=neg_list(neg_pos,:); neg_pos=neg_pos-1;
end
% Return the segmented area as logical matrix
J=J>1; |
Partager