1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
clear;
%Field Dimensions - x and y maximum (in meters)
xm=100;
ym=100;
%x and y Coordinates of the Sink
sink.x=0.5*xm;
sink.y=0.5*ym;
%Number of Nodes in the field
n=100
%Optimal Election Probability of a node
%to become cluster head
p=0.1;
%Energy Model (all values in Joules)
%Initial Energy
Eo=0.5;
%Eelec=Etx=Erx
ETX=50*0.000000001;
ERX=50*0.000000001;
%Transmit Amplifier types
Efs=10*0.000000000001;
Emp=0.0013*0.000000000001;
%Data Aggregation Energy
EDA=5*0.000000001;
%Values for Hetereogeneity
%Percentage of nodes than are advanced
m=0.1;
%\alpha
a=1;
%maximum number of rounds
rmax=100;
%%%%%%%%%%%%%%%%%%%%%%%%% END OF PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%
%Computation of do
do=sqrt(Efs/Emp);
%Creation of the random Sensor Network
figure(1);
for i=1:1:n
S(i).xd=rand(1,1)*xm;
XR(i)=S(i).xd;
S(i).yd=rand(1,1)*ym;
YR(i)=S(i).yd;
S(i).G=0;
%initially there are no cluster heads only nodes
S(i).type='N';
temp_rnd0=i;
%Random Election of Normal Nodes
if (temp_rnd0>=m*n+1)
S(i).E=Eo;
S(i).ENERGY=0;
plot(S(i).xd,S(i).yd,'o');
hold on;
end
%Random Election of Advanced Nodes
if (temp_rnd0<m*n+1)
S(i).E=Eo*(1+a)
S(i).ENERGY=1;
plot(S(i).xd,S(i).yd,'+');
hold on;
end
end
S(n+1).xd=sink.x;
S(n+1).yd=sink.y;
plot(S(n+1).xd,S(n+1).yd,'x');
%First Iteration
figure(1);
%counter for CHs
countCHs=0;
%counter for CHs per round
rcountCHs=0;
cluster=1;
countCHs;
rcountCHs=rcountCHs+countCHs;
flag_first_dead=0;
for r=0:1:rmax
r
%Operation for epoch
if(mod(r, round(1/p) )==0)
for i=1:1:n
S(i).G=0;
S(i).cl=0;
end
end
hold off;
%Number of dead nodes
dead=0;
%Number of dead Advanced Nodes
dead_a=0;
%Number of dead Normal Nodes
dead_n=0;
%counter for bit transmitted to Bases Station and to Cluster Heads
packets_TO_BS=0;
packets_TO_CH=0;
%counter for bit transmitted to Bases Station and to Cluster Heads
%per round
PACKETS_TO_CH(r+1)=0;
PACKETS_TO_BS(r+1)=0;
figure(1);
for i=1:1:n
%checking if there is a dead node
if (S(i).E<=0)
plot(S(i).xd,S(i).yd,'red .');
dead=dead+1;
if(S(i).ENERGY==1)
dead_a=dead_a+1;
end
if(S(i).ENERGY==0)
dead_n=dead_n+1;
end
hold on;
end
if S(i).E>0
S(i).type='N';
if (S(i).ENERGY==0)
plot(S(i).xd,S(i).yd,'o');
end
if (S(i).ENERGY==1)
plot(S(i).xd,S(i).yd,'+');
end
hold on;
end
end
plot(S(n+1).xd,S(n+1).yd,'x');
STATISTICS(r+1).DEAD=dead;
DEAD(r+1)=dead;
DEAD_N(r+1)=dead_n;
DEAD_A(r+1)=dead_a;
%When the first node dies
if (dead==1)
if(flag_first_dead==0)
first_dead=r
flag_first_dead=1;
end
end
countCHs=0;
cluster=1;
for i=1:1:n
if(S(i).E>0)
temp_rand=rand;
if ( (S(i).G)<=0)
%Election of Cluster Heads
if(temp_rand<= (p/(1-p*mod(r,round(1/p)))))
countCHs=countCHs+1;
packets_TO_BS=packets_TO_BS+1;
PACKETS_TO_BS(r+1)=packets_TO_BS;
S(i).type='C';
S(i).G=round(1/p)-1;
C(cluster).xd=S(i).xd;
C(cluster).yd=S(i).yd;
plot(S(i).xd,S(i).yd,'k*');
distance=sqrt( (S(i).xd-(S(n+1).xd) )^2 + (S(i).yd-(S(n+1).yd) )^2 );
C(cluster).distance=distance;
C(cluster).id=i;
X(cluster)=S(i).xd;
Y(cluster)=S(i).yd;
cluster=cluster+1;
%Calculation of Energy dissipated
distance;
if (distance>do)
S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Emp*4000*( distance*distance*distance*distance ));
end
if (distance<=do)
S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Efs*4000*( distance * distance ));
end
end
end
end
end
STATISTICS(r+1).CLUSTERHEADS=cluster-1;
CLUSTERHS(r+1)=cluster-1;
%Election of Associated Cluster Head for Normal Nodes
for i=1:1:n
if ( S(i).type=='N' && S(i).E>0 )
if(cluster-1>=1)
min_dis=sqrt( (S(i).xd-S(n+1).xd)^2 + (S(i).yd-S(n+1).yd)^2 );
min_dis_cluster=1;
for c=1:1:cluster-1
temp=min(min_dis,sqrt( (S(i).xd-C(c).xd)^2 + (S(i).yd-C(c).yd)^2 ) );
if ( temp<min_dis )
min_dis=temp;
min_dis_cluster=c;
end
end
%Energy dissipated by associated Cluster Head
min_dis;
if (min_dis>do)
S(i).E=S(i).E- ( ETX*(4000) + Emp*4000*( min_dis * min_dis * min_dis * min_dis));
end
if (min_dis<=do)
S(i).E=S(i).E- ( ETX*(4000) + Efs*4000*( min_dis * min_dis));
end
%Energy dissipated
if(min_dis>0)
S(C(min_dis_cluster).id).E = S(C(min_dis_cluster).id).E- ( (ERX + EDA)*4000 );
PACKETS_TO_CH(r+1)=n-dead-cluster+1;
end
S(i).min_dis=min_dis;
S(i).min_dis_cluster=min_dis_cluster;
end
end
end
hold on;
countCHs;
rcountCHs=rcountCHs+countCHs;
%Code for Voronoi Cells
%Unfortynately if there is a small
%number of cells, Matlab's voronoi
%procedure has some problems
%[vx,vy]=voronoi(X,Y);
%plot(X,Y,'r*',vx,vy,'b-');
% hold on;
% voronoi(X,Y);
% axis([0 xm 0 ym]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STATISTICS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% DEAD : a rmax x 1 array of number of dead nodes/round
% DEAD_A : a rmax x 1 array of number of dead Advanced nodes/round
% DEAD_N : a rmax x 1 array of number of dead Normal nodes/round
% CLUSTERHS : a rmax x 1 array of number of Cluster Heads/round
% PACKETS_TO_BS : a rmax x 1 array of number packets send to Base Station/round
% PACKETS_TO_CH : a rmax x 1 array of number of packets send to ClusterHeads/round
% first_dead: the round where the first node died
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
Partager