Bonjour, je suis étudiante et je suis débutante en réseaux des capteurs sans fil. Mon travail consiste à etudier le trafic des données dans un réseau de capteurs sans fil et de detecter et d'éviter les redondances.
J'ai déjà un programme sous matlab qui divise une zone réseau en cluster et de déterminer les cluster-head.
j'ai l'algorithme de filtrage de données, et je dois modifier le programme précédant pour intégrer cet algorithme, mais j'arrive pas à le faire. si quelau'un peut m'aider, je serai très reconnaissante.
voilà le programme:


Code : Sélectionner tout - Visualiser dans une fenêtre à part
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
 
clear;
 
%Field Dimensions - x and y maximum (in meters)
xm=100;
ym=100;
 
%x and y Coordinates of the Sink
sink.x=0.5*xm;
sink.y=0.5*ym;
 
%Number of Nodes in the field
n=100
 
%Optimal Election Probability of a node
%to become cluster head
p=0.1;
 
%Energy Model (all values in Joules)
%Initial Energy 
Eo=0.5;
%Eelec=Etx=Erx
ETX=50*0.000000001;
ERX=50*0.000000001;
%Transmit Amplifier types
Efs=10*0.000000000001;
Emp=0.0013*0.000000000001;
%Data Aggregation Energy
EDA=5*0.000000001;
 
%Values for Hetereogeneity
%Percentage of nodes than are advanced
m=0.1;
%\alpha
a=1;
 
%maximum number of rounds
rmax=100;
 
%%%%%%%%%%%%%%%%%%%%%%%%% END OF PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%
 
%Computation of do
do=sqrt(Efs/Emp);
 
%Creation of the random Sensor Network
figure(1);
for i=1:1:n
    S(i).xd=rand(1,1)*xm;
    XR(i)=S(i).xd;
    S(i).yd=rand(1,1)*ym;
    YR(i)=S(i).yd;
    S(i).G=0;
 
    %initially there are no cluster heads only nodes
    S(i).type='N';
 
    temp_rnd0=i;
    %Random Election of Normal Nodes
    if (temp_rnd0>=m*n+1) 
        S(i).E=Eo;
        S(i).ENERGY=0;
        plot(S(i).xd,S(i).yd,'o');
        hold on;
    end
    %Random Election of Advanced Nodes
    if (temp_rnd0<m*n+1)  
        S(i).E=Eo*(1+a)
        S(i).ENERGY=1;
        plot(S(i).xd,S(i).yd,'+');
        hold on;
    end
end
 
S(n+1).xd=sink.x;
S(n+1).yd=sink.y;
plot(S(n+1).xd,S(n+1).yd,'x');
 
 
%First Iteration
figure(1);
 
%counter for CHs
countCHs=0;
%counter for CHs per round
rcountCHs=0;
cluster=1;
 
countCHs;
rcountCHs=rcountCHs+countCHs;
flag_first_dead=0;
 
for r=0:1:rmax
    r
 
  %Operation for epoch
  if(mod(r, round(1/p) )==0)
    for i=1:1:n
        S(i).G=0;
        S(i).cl=0;
    end
  end
 
hold off;
 
%Number of dead nodes
dead=0;
%Number of dead Advanced Nodes
dead_a=0;
%Number of dead Normal Nodes
dead_n=0;
 
%counter for bit transmitted to Bases Station and to Cluster Heads
packets_TO_BS=0;
packets_TO_CH=0;
%counter for bit transmitted to Bases Station and to Cluster Heads 
%per round
PACKETS_TO_CH(r+1)=0;
PACKETS_TO_BS(r+1)=0;
 
figure(1);
 
for i=1:1:n
    %checking if there is a dead node
    if (S(i).E<=0)
        plot(S(i).xd,S(i).yd,'red .');
        dead=dead+1;
        if(S(i).ENERGY==1)
            dead_a=dead_a+1;
        end
        if(S(i).ENERGY==0)
            dead_n=dead_n+1;
        end
        hold on;    
    end
    if S(i).E>0
        S(i).type='N';
        if (S(i).ENERGY==0)  
        plot(S(i).xd,S(i).yd,'o');
        end
        if (S(i).ENERGY==1)  
        plot(S(i).xd,S(i).yd,'+');
        end
        hold on;
    end
end
plot(S(n+1).xd,S(n+1).yd,'x');
 
 
STATISTICS(r+1).DEAD=dead;
DEAD(r+1)=dead;
DEAD_N(r+1)=dead_n;
DEAD_A(r+1)=dead_a;
 
%When the first node dies
if (dead==1)
    if(flag_first_dead==0)
        first_dead=r
        flag_first_dead=1;
    end
end
 
countCHs=0;
cluster=1;
for i=1:1:n
   if(S(i).E>0)
   temp_rand=rand;     
   if ( (S(i).G)<=0)
 
 %Election of Cluster Heads
 if(temp_rand<= (p/(1-p*mod(r,round(1/p)))))
            countCHs=countCHs+1;
            packets_TO_BS=packets_TO_BS+1;
            PACKETS_TO_BS(r+1)=packets_TO_BS;
 
            S(i).type='C';
            S(i).G=round(1/p)-1;
            C(cluster).xd=S(i).xd;
            C(cluster).yd=S(i).yd;
            plot(S(i).xd,S(i).yd,'k*');
 
            distance=sqrt( (S(i).xd-(S(n+1).xd) )^2 + (S(i).yd-(S(n+1).yd) )^2 );
            C(cluster).distance=distance;
            C(cluster).id=i;
            X(cluster)=S(i).xd;
            Y(cluster)=S(i).yd;
            cluster=cluster+1;
 
            %Calculation of Energy dissipated
            distance;
            if (distance>do)
                S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Emp*4000*( distance*distance*distance*distance )); 
            end
            if (distance<=do)
                S(i).E=S(i).E- ( (ETX+EDA)*(4000)  + Efs*4000*( distance * distance )); 
            end
        end     
 
    end
  end 
end
 
STATISTICS(r+1).CLUSTERHEADS=cluster-1;
CLUSTERHS(r+1)=cluster-1;
 
%Election of Associated Cluster Head for Normal Nodes
for i=1:1:n
   if ( S(i).type=='N' && S(i).E>0 )
     if(cluster-1>=1)
       min_dis=sqrt( (S(i).xd-S(n+1).xd)^2 + (S(i).yd-S(n+1).yd)^2 );
       min_dis_cluster=1;
       for c=1:1:cluster-1
           temp=min(min_dis,sqrt( (S(i).xd-C(c).xd)^2 + (S(i).yd-C(c).yd)^2 ) );
           if ( temp<min_dis )
               min_dis=temp;
               min_dis_cluster=c;
           end
       end
 
       %Energy dissipated by associated Cluster Head
            min_dis;
            if (min_dis>do)
                S(i).E=S(i).E- ( ETX*(4000) + Emp*4000*( min_dis * min_dis * min_dis * min_dis)); 
            end
            if (min_dis<=do)
                S(i).E=S(i).E- ( ETX*(4000) + Efs*4000*( min_dis * min_dis)); 
            end
        %Energy dissipated
        if(min_dis>0)
          S(C(min_dis_cluster).id).E = S(C(min_dis_cluster).id).E- ( (ERX + EDA)*4000 ); 
         PACKETS_TO_CH(r+1)=n-dead-cluster+1; 
        end
 
       S(i).min_dis=min_dis;
       S(i).min_dis_cluster=min_dis_cluster;
 
   end
 end
end
hold on;
 
countCHs;
rcountCHs=rcountCHs+countCHs;
 
 
 
%Code for Voronoi Cells
%Unfortynately if there is a small
%number of cells, Matlab's voronoi
%procedure has some problems
 
%[vx,vy]=voronoi(X,Y);
%plot(X,Y,'r*',vx,vy,'b-');
% hold on;
% voronoi(X,Y);
% axis([0 xm 0 ym]);
 
end
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   STATISTICS    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                                     %
%  DEAD  : a rmax x 1 array of number of dead nodes/round 
%  DEAD_A : a rmax x 1 array of number of dead Advanced nodes/round
%  DEAD_N : a rmax x 1 array of number of dead Normal nodes/round
%  CLUSTERHS : a rmax x 1 array of number of Cluster Heads/round
%  PACKETS_TO_BS : a rmax x 1 array of number packets send to Base Station/round
%  PACKETS_TO_CH : a rmax x 1 array of number of packets send to ClusterHeads/round
%  first_dead: the round where the first node died                   
%                                                                                     %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
voilà l'algorithme: (image jointe à ce message)
Nom : algorithme.png
Affichages : 181
Taille : 66,3 Ko

merci d'avance