IdentifiantMot de passe
Loading...
Mot de passe oublié ?Je m'inscris ! (gratuit)
Navigation

Inscrivez-vous gratuitement
pour pouvoir participer, suivre les réponses en temps réel, voter pour les messages, poser vos propres questions et recevoir la newsletter

Contribuez Python Discussion :

Simulation d'épidémie COVID-19


Sujet :

Contribuez Python

  1. #1
    Futur Membre du Club
    Homme Profil pro
    Autre
    Inscrit en
    Mars 2020
    Messages
    1
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France, Val de Marne (Île de France)

    Informations professionnelles :
    Activité : Autre

    Informations forums :
    Inscription : Mars 2020
    Messages : 1
    Points : 9
    Points
    9
    Par défaut Simulation d'épidémie COVID-19
    Bonjour, je voudrais vous partager un morceau de code, pour ceux qui s’intéressent à la simulation d'épidémies.

    C'est pas le plus beau code du monde puisque j'ai appris à coder sur une TI 83+, mais ça fonctionne correctement, et je pense que vous pourriez facilement l'optimiser et l'améliorer.

    N'hésitez donc pas à modifier, améliorer ou juste vous amusez avec ce programme.

    Je peux répondre aux questions sur le code si il y a des zones d'ombre.

    N'oubliez pas d'installer matplotlib (pip install matplotlib) si ce n'est pas déjà fait.

    Bien à vous, Pierre.



    Code : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    293
    294
    295
    296
    297
    298
    299
    300
    301
    302
    303
    304
    305
    306
    307
    308
    309
    310
    311
    312
    313
    314
    315
    316
    317
    318
    319
    320
    321
    322
    323
    324
    325
    326
    327
    328
    329
    330
    331
    332
    333
    334
    335
    336
    337
    338
    339
    340
    341
    342
    343
    344
    345
    346
    347
    348
    349
    350
    351
    352
    353
    354
    355
    356
    357
    358
    359
    360
    361
    362
    363
    364
    365
    366
    367
    368
    369
    370
    371
    372
     
    #from random import *
    import matplotlib.pyplot as plt
    from tkinter import *
    from tkinter import messagebox
    from matplotlib.lines import Line2D
     
     
     
    def start_simulation(_): #Function that will run the simulation after the start button or enter is pressed.
        font = {'size': 8}
        plt.rc('font', **font)
        plt.figure(1, figsize=(10, 6))
        plt.xlabel('Time (in days)')
        plt.ylabel('Population')
     
    #Setting variables :
        simulation_length = int(simulation_length_field.get())
        increment_1=1
        infected_total = 0
        immunized = 0
        desimmunized = 0
        death_total = 0
        icu_in_the_same_time = 0
        icu_total = 0
        contagiousness = float(contagiousness_field.get()) / 100
        number_of_contact_per_day = float(contact_per_day_field.get())
        healthy = int(population_size_field.get())
        infected = int(initially_infected_field.get())
        time_before_immunization = int(disease_duration_field.get())
        death_rate = float(death_rate_field.get()) / 100
        icu_rate = float(icu_rate_field.get()) / 100
        mean_icu_stay_length = int(icu_duration_field.get())
        table_immunization = simulation_length * [0]
        table_icu = time_before_immunization * [0]
        death_multiplier = int(death_multiplier_v.get())
        icu_multiplier = int(icu_multiplier_v.get())
        display_healthy = int(display_healthy_v.get())
        immunization_length = int(immunisation_duration_field.get())
        display_death = int(display_death_v.get())
        display_icu = int(diplay_icu_v.get())
        dynamic_graph = int(dynamic_display_v.get())
        isolate_infected = int(infected_detection_v.get())
        time_before_detection = int(sick_days_before_detection_v.get())
        table_isolated = time_before_detection * [0]
        isolation_rate = int(proportion_isolated_v.get()) / 100
        isolated_total = 0
        healthy = healthy - infected
        infected_initially=infected
        healthy_initially = healthy
        table_infected = [infected]
        growth_rate = 0
        death_before_reducing_contact=int(death_before_quarantine_v.get())
        reduce_contact = int(quarantine_v.get())
     
        # find and fix errors before starting graph :
        if time_before_detection > time_before_immunization and isolate_infected == 1:
            time_before_detection = time_before_immunization
            messagebox.showinfo('Error', 'Delay before infected detection must be lower than the disease duration. Detection time has been set to ' + str(time_before_immunization) + '.')
     
        # enable static view if ticked :
        if dynamic_graph==0 :
            plt.axis([0, simulation_length, 0, healthy])
     
        # enable/disable death and/or ICU multiplier, to have a better overview when plotted :
        if death_multiplier == 1:
            death_multiply = 10
        else:
            death_multiply = 1
     
        if icu_multiplier ==1:
            icu_multiply = 10
        else:
            icu_multiply = 1
     
        # allow line 132 to run properly if isolation of infected is disabled :
        if isolate_infected == 0:
            table_isolated = simulation_length * [0]
     
        # Start of the main loop, which calculate data for each day :
        for actual_day in range(0,simulation_length):
            # infected_per_day=0  #reset the count of infected for each new day (only used if slow calculation is used)
            increment_1 = increment_1+1  # allows line 182 to 187 to run properly, avoid unwanted early epidemic termination.
     
            # reduces the number of contact per day to 1, when the total number of death is superior to the chosen limit:
            if death_total > death_before_reducing_contact and reduce_contact==1:
                number_of_contact_per_day = 1
     
            # This secondary loop is deactivated by default, it could be interesting if you plan on doing simulation of small populations (<50 000), to have a unique simulation at each run
            # It calculate each day and for each subject if they are infected or not by running a random function
            # But it is way too slow for big populations
            # If you decide to activate it, delete the triple quote at the beginning and at the end of the paragraph and add some to the next paragraph, also remove the # before infected_per_day=0 (line 81) and before random import at the beginning.
            '''for subject in range(0,healthy):
                probability_of_being_contaminated = number_of_contact_per_day*contagiousness*infected/(healthy+infected+immunized)
                if random() <= probability_of_being_contaminated:
                   infected_per_day = infected_per_day + 1
                   healthy = healthy -1'''
     
            # Add triple quote here if needed (cf line 91)
            # Calculation of the daily new infected :
            probability_of_being_contaminated = number_of_contact_per_day * contagiousness * infected / (
                    healthy + infected + immunized)
            infected_per_day =  int((healthy * probability_of_being_contaminated))
            healthy = healthy - int((healthy * probability_of_being_contaminated)) # Add triple quote here if needed (cf line 91)
     
     
            table_infected.append(infected_per_day) # Saving the infected of the day in a table in order to remove them after healing time has past
     
            # Increment the infected counters
            infected=infected + infected_per_day
            infected_total = infected_total + infected_per_day
     
            # Growth rate calculation & displaying title + growth rate on the graph :
            if table_infected[actual_day-1] != 0:
                growth_rate=table_infected[actual_day]/table_infected[actual_day-1]
            graph_title = 'Epidemic Simulation,  Growth factor = ' + str(round(growth_rate,2))
            plt.suptitle(graph_title)
     
            # Detection and isolation of the infected :
            if isolate_infected == 1 and actual_day >= time_before_detection:
                infected_isolated = int(isolation_rate * table_infected[actual_day - time_before_detection])
                table_infected[actual_day - time_before_detection] = table_infected[actual_day - time_before_detection] - infected_isolated
                infected = infected - infected_isolated
                table_isolated.append(infected_isolated)
                isolated_total = isolated_total + infected_isolated
     
            plt.pause(0.05) # For live display
     
            # Infected become immunized after the time_before_immunization, or go to ICU or die :
            if actual_day >= time_before_immunization:
                infected = infected - table_infected[(actual_day - time_before_immunization)]
                daily_death = death_rate * (table_infected[actual_day - time_before_immunization])
                daily_icu = icu_rate*(table_infected[actual_day - time_before_immunization])
                immunized = immunized + table_infected[(actual_day - time_before_immunization)] - daily_death - daily_icu
     
                #same job for the infected in quarantine (become immunized, go to ICU or die) :
                if isolate_infected == 1 and actual_day >= time_before_detection:
                    isolated_icu = icu_rate * (table_isolated[actual_day - time_before_immunization])
                    daily_icu = daily_icu +isolated_icu
                    isolated_death = death_rate * (table_isolated[actual_day - time_before_immunization])
                    daily_death = daily_death + isolated_death
                    immunized = immunized + table_isolated[actual_day - time_before_immunization] - isolated_death - isolated_icu
                    isolated_total = isolated_total - table_isolated[actual_day - time_before_immunization]
     
                # If the immunization is not permanent, immunized subject get back to the healthy state and can be infected again :
                if immunization_length !=0:
                    table_immunization[actual_day] = (table_infected[(actual_day - time_before_immunization)] - daily_death - daily_icu) + (table_isolated[actual_day - time_before_immunization])
                    desimmunized = round(table_immunization[actual_day - immunization_length])
                if actual_day >= immunization_length != 0:
                    healthy = healthy + desimmunized
                    immunized = immunized - desimmunized
     
                # ICU count, adding daily_ICU to ICU_table in order to be able to retrieve and switch ICU subject from ICU to Immunized, Death count :
                icu_in_the_same_time = icu_in_the_same_time + daily_icu
                icu_total = icu_total + daily_icu
                table_icu.append(daily_icu)
                death_total = death_total + daily_death
     
                # When the mean ICU stay length is gone, subject from ICU switch to Immunized subjects :
                if actual_day >= mean_icu_stay_length:
                    icu_in_the_same_time = icu_in_the_same_time - table_icu[actual_day - mean_icu_stay_length]
                    immunized = immunized + table_icu[actual_day - mean_icu_stay_length]
     
                #Display of the legend on the graph :
                infected_patch = Line2D([0], [0], marker='o', color='w', label='Actual infected : ' + str(round(infected)), markerfacecolor='red', markersize=7)
                infected_per_day_patch = Line2D([0], [0], marker='^', color='w', label='Infected per day : ' + str(round(infected_per_day)), markerfacecolor='red', markersize=7)
                infected_total_patch = Line2D([0], [0], marker='*', color='w',label='Inf total : ' + str(round(infected_total)) + ' (' + str(round(infected_total / (infected_initially + healthy_initially) * 100, 1)) + ' %)', markerfacecolor='r', markersize=11)
                immunized_patch = Line2D([0], [0], marker='o', color='w', label='Immunized : ' + str(round(immunized)) + ' (' + str(round(immunized / (infected_initially + healthy_initially) * 100, 1)) + ' %)',markerfacecolor='green', markersize=7)
                death_patch = Line2D([0], [0], marker='o', color='w', label='Actual deaths : ' + str(round(daily_death)), markerfacecolor='black', markersize=7)
                death_total_patch = Line2D([0], [0], marker='*', color='w', label='Deaths total : ' + str(round(death_total)) + ' (' + str(round(death_total / (infected_initially + healthy_initially) * 100, 1)) + ' %)', markerfacecolor='black', markersize=11)
                icu_patch = Line2D([0], [0], marker='o', color='w', label='Actual ICU : ' + str(round(daily_icu)), markerfacecolor='blue', markersize=7)
                icu_total_patch = Line2D([0], [0], marker='*', color='w', label='ICU total : ' + str(round(icu_total)) + ' (' + str(round(icu_total / (infected_initially + healthy_initially) * 100, 1)) + ' %)', markerfacecolor='blue', markersize=11)
                healthy_patch = Line2D([0], [0], marker='o', color='w', label='Healthy not immunized', markerfacecolor='purple', markersize=7)
                isolated_patch = Line2D([0], [0], marker='o', color='w', label='Actual isolated : ' + str(round(isolated_total)), markerfacecolor='orange', markersize=7)
                info_prct_patch = Line2D([0], [0], marker='o', color='w', label='(% are on total population)', markerfacecolor='white',markersize=7)
     
                #Display the healthy subject on the legend if ticked, else not :
                if display_healthy == 1:
                    plt.legend(handles=[infected_patch, infected_per_day_patch, infected_total_patch, immunized_patch, icu_patch, icu_total_patch, death_patch, death_total_patch, healthy_patch, isolated_patch,info_prct_patch ])
                else:
                    plt.legend(handles=[infected_patch, infected_per_day_patch, infected_total_patch, immunized_patch, icu_patch, icu_total_patch,death_patch, death_total_patch, isolated_patch,info_prct_patch])
     
     
            else: # If the time of immunization/death/ICU (time_before_immunization) is not yet passed, this legend is shown. It's because the calculations of immunized, death and ICU can start only after this delay.
                infected_patch = Line2D([0], [0], marker='o', color='w', label='Inf : ' + str(round(infected-infected_initially)), markerfacecolor='r', markersize=7)
                infected_per_day_patch = Line2D([0], [0], marker='^', color='w', label='Inf per day : ' + str(round(infected_per_day)), markerfacecolor='r', markersize=7)
                infected_total_patch = Line2D([0], [0], marker='*', color='w', label='Inf total : ' + str(round(infected_total)) +' ---> ' + str(round(infected_total / (infected_initially + healthy_initially)*100, 1)) + ' %', markerfacecolor='r', markersize=11)
                plt.legend(handles=[infected_patch, infected_per_day_patch, infected_total_patch])
     
            # If the epidemic is gone, there's no more cases, no more virus to spread, a pop-up window appears :
            if infected == 0 and increment_1 > 10:
                result_end_question = messagebox.askquestion('Epidemic is gone', 'Do you want to quit all?')
                if result_end_question == 'yes':
                   quit()
                else:
                   break
     
            # Plot the different curves on the graph, sometimes with conditions (if the checkbox is ticked or not..)
            plt.scatter(actual_day, infected, color='red', s=1)
            plt.scatter(actual_day, immunized, color='green', s=1)
            if display_death == 1:
                plt.scatter(actual_day, death_total * death_multiply, color='black', s=1)
            if display_icu == 1:
                plt.scatter(actual_day, icu_in_the_same_time * icu_multiply, color='blue', s=1)
            if isolate_infected == 1:
                plt.scatter(actual_day, isolated_total, color='orange', s=1)
            if display_healthy == 1:
                plt.scatter(actual_day, healthy, color='purple', s=1)
     
        plt.show()
     
     
    # This is the first window of the program :
    window = Tk()
    window.title('EPIDEMIC SIMULATION')
     
    label_1 = Label()
    label_1.grid(column=0, rowspan=4) #this is just a space...
     
    #Every left sliders are declared here :
    contagiousness_v = StringVar()
    contagiousness_v.set(5)
    contagiousness_field = Scale(window, variable = contagiousness_v, orient='horizontal', from_=0, to=20,
                                 resolution=0.1, tickinterval=0, length=350,
                                 label='% Contagiousness')
    contagiousness_field.grid(column=0, rowspan=4, padx=20)
     
    contact_per_day_v = StringVar()
    contact_per_day_v.set(4)
    contact_per_day_field = Scale(window, variable = contact_per_day_v, orient='horizontal', from_=0, to=30,
                                  resolution=1, tickinterval=0, length=350,
                                  label='N contact per day')
    contact_per_day_field.grid(column=0, rowspan=4)
     
    population_size_v = StringVar()
    population_size_v.set(1000000)
    population_size_field = Scale(window, variable = population_size_v, orient='horizontal', from_=100000, to=10000000,
                                  resolution=100000, tickinterval=0, length=800,
                                  label='Population size')
    population_size_field.grid(column=0, rowspan=4, columnspan=4, sticky='W', padx=20)
     
    initially_infected_v = StringVar()
    initially_infected_v.set(500)
    initially_infected_field = Scale(window, variable = initially_infected_v, orient='horizontal', from_=1, to=10000,
                                     resolution=1, tickinterval=0, length=800, sliderlength=15,
                                     label='N initially infected')
    initially_infected_field.grid(column=0, rowspan=4, columnspan=4, sticky='W', padx=20)
     
    death_rate_v = StringVar()
    death_rate_v.set(1)
    death_rate_field = Scale(window, variable = death_rate_v, orient='horizontal', from_=0, to=100,
                             resolution=0.5, tickinterval=0, length=350,
                             label='Death rate in %, when infected')
    death_rate_field.grid(column=0, rowspan=4)
     
    icu_rate_v = StringVar()
    icu_rate_v.set(4)
    icu_rate_field = Scale(window, variable = icu_rate_v, orient='horizontal', from_=0, to=100,
                           resolution=0.5, tickinterval=0, length=350,
                           label='ICU rate in %, when infected')
    icu_rate_field.grid(column=0, rowspan=4)
     
    icu_duration_v = StringVar()
    icu_duration_v.set(12)
    icu_duration_field = Scale(window, variable = icu_duration_v, orient='horizontal', from_=1, to=20,
                               resolution=1, tickinterval=0, length=350,
                               label='ICU mean duration of stay, in days')
    icu_duration_field.grid(column=0, rowspan=4)
     
    simulation_length_v = StringVar()
    simulation_length_v.set(100)
    simulation_length_field = Scale(window, variable = simulation_length_v, orient='horizontal', from_=50, to=1000,
                                    resolution=50, tickinterval=0, length=350,
                                    label='Simulation length, in days')
    simulation_length_field.grid(column=0, rowspan=4)
     
    disease_duration_v = StringVar()
    disease_duration_v.set(10)
    disease_duration_field = Scale(window, variable = disease_duration_v, orient='horizontal', from_=1, to=30,
                                   resolution=1, tickinterval=0, length=350,
                                   label='Disease duration, in days (before dying or being immunized)')
    disease_duration_field.grid(column=0, rowspan=4)
     
    immunization_duration_v = StringVar()
    immunization_duration_v.set(0)
    immunisation_duration_field = Scale(window, variable = immunization_duration_v, orient='horizontal', from_=0, to=200,
                                        resolution=5, tickinterval=0, length=350,
                                        label='Immunization duration, in days (0 = forever)')
    immunisation_duration_field.grid (column=0, rowspan=4)
     
    label_2 = Label()
    label_2.grid(column=0, rowspan=4) # Just a space..
     
    # Every checkbox are declared here + Start button :
    infected_detection_v = IntVar()
    infected_detection_v.set(0)
    infected_detection_checkbox = Checkbutton(window, text='Detect INF after ', variable=infected_detection_v)
    infected_detection_checkbox.grid(column=2, row=7, sticky='W')
     
    sick_days_before_detection_v = StringVar()
    sick_days_before_detection_v.set(5)
    sick_days_before_detection_field = Scale(window, variable = sick_days_before_detection_v, orient='horizontal',
                                             from_=1, to=30, resolution=1, tickinterval=0, length=35,
                                             sliderlength=5, width=3)
    sick_days_before_detection_field.grid(column=2, row=7)
     
    text_2 = Label(window, text ='days sick and isolate')
    text_2.grid(column=2, row=7, sticky='E')
     
    proportion_isolated_v=StringVar()
    proportion_isolated_v.set(50)
    proportion_isolated_field = Scale(window, variable = proportion_isolated_v, orient='horizontal', from_=1, to=100,
                                      resolution=5, tickinterval=0, length=60, sliderlength=10, width=3)
    proportion_isolated_field.grid(column=3, row=7, sticky='W')
     
    text_3 = Label(window, text ='% of them')
    text_3.grid(column=3, row=7)
     
    quarantine_v = IntVar()
    quarantine_v.set(0)
    quarantine_checkbox = Checkbutton(window, text='Reduce to 1 contact per day when reaching ', variable=quarantine_v)
    quarantine_checkbox.grid(column=2, row=11, sticky='W')
     
    death_before_quarantine_v=StringVar()
    death_before_quarantine_v.set(100)
    death_before_quarantine_field = Scale(window, variable = death_before_quarantine_v, orient='horizontal',
                                          from_=1, to=5000, resolution=50, tickinterval=0, length=120,
                                          sliderlength=10, width=3)
    death_before_quarantine_field.grid(column=3, row=11, sticky='W')
     
    text_1 = Label(window, text ='deaths')
    text_1.grid(column=3, row=11, sticky='E', padx=20)
     
    display_death_v = IntVar()
    display_death_v.set(1)
    display_death_checkbox = Checkbutton(window, text='Display Deaths', variable=display_death_v)
    display_death_checkbox.grid(column=2, row=23, sticky='W')
     
    death_multiplier_v = IntVar()
    death_multiplier_v.set(1)
    death_multiplier_checkbox = Checkbutton(window, text='Display Deaths x10', variable=death_multiplier_v)
    death_multiplier_checkbox.grid(column=2, row=23, sticky='E')
     
    diplay_icu_v = IntVar()
    diplay_icu_v.set(1)
    display_icu_checkbox = Checkbutton(window, text='Display ICU', variable=diplay_icu_v)
    display_icu_checkbox.grid(column=2, row=27, sticky='W')
     
    icu_multiplier_v = IntVar()
    icu_multiplier_v.set(1)
    icu_multiplier_checkbox = Checkbutton(window, text='Display ICU x10', variable=icu_multiplier_v)
    icu_multiplier_checkbox.grid(column=2, row=27, sticky='E')
     
    display_healthy_v = IntVar()
    display_healthy_v.set(1)
    display_healthy_checkbox = Checkbutton(window, text='Display Healthy persons', variable=display_healthy_v)
    display_healthy_checkbox.grid(column=3, row = 39, sticky='W', padx=20)
     
    dynamic_display_v = IntVar()
    dynamic_display_v.set(0)
    dynamic_display_checkbox = Checkbutton(window, text='Dynamic display', variable=dynamic_display_v)
    dynamic_display_checkbox.grid(column=3, row=40, sticky='W', padx=20)
     
    start_button = Button(window, text='Start simulation')
    start_button.grid(column=3, row=43)
    start_button.bind('<Button-1>', start_simulation)
    window.bind('<Return>', start_simulation)
     
    text_4 = Label(window, text ='@pirog, 2020')
    text_4.grid(column=2, row=44)
     
    window.mainloop()

  2. #2
    Membre émérite

    Homme Profil pro
    Ingénieur calcul scientifique
    Inscrit en
    Mars 2013
    Messages
    1 229
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France, Alpes Maritimes (Provence Alpes Côte d'Azur)

    Informations professionnelles :
    Activité : Ingénieur calcul scientifique

    Informations forums :
    Inscription : Mars 2013
    Messages : 1 229
    Points : 2 328
    Points
    2 328
    Par défaut
    Salut

    Sympa cette initiative.

    Alors pour démarrer :
    - Banni le import *, dans tous tes codes, donc en particulier dans celui là.
    Remplace
    par
    puis après à chaque fois que tu appelles une commande tkinter par exemple Checkbutton et bien tu écris tk.Checkbutton à la place.
    A cause de ça mon IDE, me met des warning partout où tu as des commandes tkinter

    - Pour raccourcir certaines lignes de codes, pense à utiliser la contraction suivante :
    Code : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    i = i + 1
    i += 1   ### Forme contractée
    qui est valable pour les opérateurs - et * aussi (et d'autres encore)

    - Côté sémantique on s'y perd un peu. Tu as une fonction qui s'appelle start_simu, sauf qu'elle fait toute la simu, et qu'en plus elle fait un affichage graphique. Donc il faudrait séparer le calcul (la simu) du plot en au moins 2 fonctions distinctes.
    Il faut se dire que si je lis le code, je dois pouvoir retrouver les équations mathématiques regissant le modèle très facilement. Là ce n'est pas le cas.

    - Ta simulation, qui soit disant prend 0 paramètre... Non elle a des paramètres, puisque dans ta fonction tu tires sur des variables qui sont définies à l'extérieur de celle-ci. Donc donne des paramètre à ta fonction, comme par exemple probability_of_being_contaminated. Et puis tant qu'à faire, fait lui aussi retourner qqch (les données à plotter par exemple, ce sera nettement plus facile ainsi de séparer le plot du calcul).

    Il y aurait encore surement à redire (je trouve le temps de calcul étonnamment long pour des opérations qui ont l'air très simple). Là en l'état difficile d'y voir plus clair. Peut etre qu'avec numpy tu pourrais gagner, ou en calculant toute la simu d'un coup, et d'afficher juste le résultat final (sans l'animation), mais ca on ne pourra te le dire que quand le kernel (le noyau de simulation) sera rendu indépendant de toute les lignes de code lié au graphisme.

  3. #3
    Membre expert
    Homme Profil pro
    Inscrit en
    Octobre 2011
    Messages
    2 886
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France

    Informations forums :
    Inscription : Octobre 2011
    Messages : 2 886
    Points : 3 725
    Points
    3 725
    Par défaut
    Salut,

    Merci pour le partage...

  4. #4
    Membre chevronné
    Homme Profil pro
    Enseignant
    Inscrit en
    Juin 2013
    Messages
    1 609
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France

    Informations professionnelles :
    Activité : Enseignant
    Secteur : Enseignement

    Informations forums :
    Inscription : Juin 2013
    Messages : 1 609
    Points : 2 073
    Points
    2 073
    Par défaut
    Dur dur de comprendre le tout : entre l'anglais et les calculs...
    Juste une remarque :
    Code : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    quit_button = tk.Button(window, text='Quit', command=window.destroy)
    quit_button.grid(column=3, row=45)
    Pas d'aide par mp.

Discussions similaires

  1. L'épidémie de COVID-19 s'arrêtera le 29 avril, ou bien en 2029
    Par Sunchaser dans le forum Humour Informatique
    Réponses: 17
    Dernier message: 16/03/2020, 14h36
  2. Probleme Voyageur de Commerce - Recuit Simulé
    Par dinver dans le forum Algorithmes et structures de données
    Réponses: 4
    Dernier message: 21/06/2009, 22h26
  3. Projet simulation d'épidémie.
    Par craps78 dans le forum C
    Réponses: 4
    Dernier message: 09/01/2007, 18h01
  4. Simuler un coup de molette sur un memo...
    Par dynobremo dans le forum Composants VCL
    Réponses: 2
    Dernier message: 28/02/2003, 11h31
  5. Simulation de transmission de paquet entre différent réseaux
    Par MelloW dans le forum Développement
    Réponses: 2
    Dernier message: 12/07/2002, 19h51

Partager

Partager
  • Envoyer la discussion sur Viadeo
  • Envoyer la discussion sur Twitter
  • Envoyer la discussion sur Google
  • Envoyer la discussion sur Facebook
  • Envoyer la discussion sur Digg
  • Envoyer la discussion sur Delicious
  • Envoyer la discussion sur MySpace
  • Envoyer la discussion sur Yahoo