IdentifiantMot de passe
Loading...
Mot de passe oublié ?Je m'inscris ! (gratuit)
Navigation

Inscrivez-vous gratuitement
pour pouvoir participer, suivre les réponses en temps réel, voter pour les messages, poser vos propres questions et recevoir la newsletter

Big Data Discussion :

spark configuration and integration guidelines


Sujet :

Big Data

  1. #1
    Candidat au Club
    Femme Profil pro
    Étudiant
    Inscrit en
    Août 2020
    Messages
    1
    Détails du profil
    Informations personnelles :
    Sexe : Femme
    Localisation : Tunisie

    Informations professionnelles :
    Activité : Étudiant

    Informations forums :
    Inscription : Août 2020
    Messages : 1
    Points : 4
    Points
    4
    Par défaut spark configuration and integration guidelines
    hello everyone

    I am a new member here , an ICT engineering student and I am a beginner in big data,
    I am currently in a big data internship and I need some help and guidance .
    how to choose the convinient programming language : python or scala ( i have never programmed with scala but i did with python )
    how to choose between Cassandra and MongoDB
    how can i configure and integrate spark ?

    thank you in advance

  2. #2
    Candidat au Club
    Homme Profil pro
    Administrateur de base de données
    Inscrit en
    Avril 2023
    Messages
    3
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Âge : 45
    Localisation : Tunisie

    Informations professionnelles :
    Activité : Administrateur de base de données

    Informations forums :
    Inscription : Avril 2023
    Messages : 3
    Points : 4
    Points
    4
    Par défaut Python or Scala? Cassandra or MongoDB? How to configure Spark?
    When it comes to choosing a programming language for big data processing, both Python and Scala have their strengths and weaknesses. Here are some factors to consider:
    Python is more commonly used for data science and has a larger community and ecosystem of libraries and frameworks for data analysis, machine learning, and visualization. It is also easier to learn and use for beginners.
    Scala, on the other hand, is faster and more efficient in processing large volumes of data and has better support for distributed computing. It is also the language of choice for Apache Spark, which is a popular big data processing framework.
    Ultimately, the choice between Python and Scala depends on your specific needs and requirements. If you're more comfortable with Python and need to focus on data science, then stick with Python. If you need better performance and want to work with distributed systems, then learn Scala.

    When it comes to choosing between Cassandra and MongoDB, again, there are some factors to consider:
    Cassandra is designed for high scalability and high availability with a distributed architecture, making it a good fit for handling large amounts of data across multiple data centers. It also offers strong consistency guarantees.
    MongoDB is a document-based database that is easy to use and offers flexibility in handling unstructured and semi-structured data. It also offers good scalability and high availability.
    Ultimately, the choice between Cassandra and MongoDB depends on your specific use case and requirements. If you need high scalability and strong consistency, then choose Cassandra. If you need more flexibility in handling unstructured data, then choose MongoDB.

    To configure and integrate Spark, here are the general steps:
    https://thepythoncoding.blogspot.com/2023/04/python-or-scala-cassandra-or-mongodb.html

Discussions similaires

  1. spark - addfile and --files
    Par joan_27 dans le forum Big Data
    Réponses: 0
    Dernier message: 25/08/2018, 00h55
  2. Réponses: 2
    Dernier message: 31/12/2010, 11h30
  3. Réponses: 2
    Dernier message: 24/09/2010, 13h20
  4. integrer le look and feed quaqua.
    Par croc14 dans le forum AWT/Swing
    Réponses: 2
    Dernier message: 18/07/2008, 09h54

Partager

Partager
  • Envoyer la discussion sur Viadeo
  • Envoyer la discussion sur Twitter
  • Envoyer la discussion sur Google
  • Envoyer la discussion sur Facebook
  • Envoyer la discussion sur Digg
  • Envoyer la discussion sur Delicious
  • Envoyer la discussion sur MySpace
  • Envoyer la discussion sur Yahoo